DECLARATION	ii
APPROVAL	iii
ABSTRACT	iv
ACKNOWLEDGEMENTS	V
CONTENTS	vii-ix

CONTENTS

•

VII

LIST OF TABLES

x-xiii

.

· .

1.1.1 Nature & distribution of bacterial flora on fish

1.1 INTRODUCTION

sirm & THEIR RELATED MICROBIAL FLORA

DELAYED ICING OF TRENCHED SARDINES Amblygaster

QUALITY CHANGES ASSOCIATED WITH THE IMMEDIATE &

CHAPTER 1

GENERAL INTRODUCTION i

LIST ANNEXES

LIST OF FIGURES

-

xiv-xv

xvi

1

- 144

.

*

٠

5

5

1 s

~

1.1.2	Bacterial spoilage of fish	7
1.1.3	Biochemical changes occuring during fish storage	7
1.2	MATERIALS & METHODS	11
1.2.1	Fish harvesting	11
1.2.2	Fish handling	11
1.2.3	Test methods used	11
1.2.3.1	Microbiological analysis of fish	· 11
1.2.3.2	Characterization of isolates	12
1.2.3.3	Chemical analysis of fish	. 12
1.2.3.4	Biochemical tests used in the characterization	

of isolates 1.2.4 Visual Observation

1.3 RESULTS

1.4 DISCUSSION

1.5 Annexes

15

26

27

49

53-57

•

٠

.

STUDIES ON MICROBIAL CHARACTERISTICS & QUALITY CHANGES OF VACUUM PACKED TRENCHED SARDINES <u>Amblygaster sirm</u> STORED UNDER REFRIGERATION CONDITIONS

CHAPTER 2

.

at 15°C

VIII

.

•

-

+

.

.

٠

-

•

٠

79

85

91

103

۰

•

2.1.1	Vacuum packaging in relation to quality, storage &	
	distribution	60
2.1.2	The use of potassium sorbate dips	62
2.1.3	The use of irradiation treatment	64
2.2	MATERIALS & METHODS	69
2.2.1	Handling of fish	69
2.2.2	Pretreatment of dressed fish	69
2.2.2		
(a)	Potassium sorbate dip	69

(b)	Irradiation	69
(c)	Saturated salting	70
(d)	Control sample	70
2.2.3	Packaging of fish	70
2.2.4	Storage of vacuum packed fish	70
2.2.5	Microbiological analysis of vacuum packed fish	. 70
2.2.6	Characterization of isolates	71
2.2.7	Chemical analysis of refrigerated vacuum packs	71
2.2.8	Organoleptic evaluation	· 72
2.3	RESULTS	· 73
2.3.1	Storage aspects of untreated fish held at 4° C	73

- 2.3.2 Storage aspects of sorbate treated fish held at 4^oC
- 2.3.3 Storage aspects of irradiated fish held at 4°C
- 2.3.4 Storage aspects of salt saturated fish held
- 2.3.5 Storage aspects of untreated fish held at 15°C 97
 2.3.6 Storage aspects of sorbate treated fish held

IX

2.3.7 Storage aspects of salt saturated fish held at $15^{\circ}C$ 109

•

2.3.8 Storage aspects of irradiated fish held at 15°C 115

2.4 DISCUSSION

CHAPTER 3

-*

PROCESSING & STORAGE OF VACUUM PACKED, HEAT STERILIZED TRENCHED SARDINES <u>Amblygaster sirm</u>

3.1	INTRODUCTION	129
3.1.1	The retort pouch & its applications	129
3.2	MATERIALS & METHODS	134
3.2.1	Fish handling for retorted vacuum pouches	134
3.2.2	Vacuum packaging	134

3.2.3	Fish processing - determination of shelf life of		
	retorted vacuum pouches	134	
3.2.4	Organoleptic ['] evaluation	134	
3.2.5	Chemical analysis	134	
3.2.6	Fish processing - determination of F _o		
	(Thermal process time) BY A THERMAL PROCESS	135	
3.2.7	Determination of F _o		
	(Thermal process time) BY GILLESPY'S METHOD	136	
3.3	RESULTS	137	
3.4	DISCUSSION	149	

۹

•

3.5 Annexes

152-165

....

4.0 CONCLUSION

BIBLIOGRAPHY

,

ť

LIST OF TABLES

CHAPTER 1

TABLE 1 Observations of fish iced at site (0 hour), 5 hour & 10 hour after landing
TABLE 2 Proximate composition of <u>Amblygaster sirm</u>
31

TABLE 3 Oil content (%) of <u>Amblygaster</u> sirm 31

•

TABLE 5 Effect of delayed icing on the total volatile nitrogen in Amblygaster sirm

Х

TABLE 6 Effect of delayed icing on the pH of <u>Amblygaster</u> sirm

- TABLE 7 Effect of delayed icing on the major grouping of microflora
- TABLE 8 Effect of delayed icing on the gram positive microflora on <u>Amblygaster sirm</u>

TABLE 9 Effect of delayed icing on the gram negative microflora on <u>Amblygaster sirm</u>

TABLE 10 Further identification of some <u>Pseudomonas</u> spp. -

46

74

75

32

33

34

35

36

1

		colony & cultural appearance	38
TABLE	11	Biochemical identification of some <u>Pseudomonas</u>	
		species	39
TABLE	12	Identity of some <u>Pseudomonas</u> species	40
TABLE	13	Further identification of Micrococcus spp colony &	
		cultural appearance	41
TABLE	14	Biochemical identification of some <u>Micrococcus</u>	
		species	42
TABLE	15	Identity of some <u>Micrococcus</u> species	43
TABLE	16	Further identification of <u>Bacillus</u> spp colony &	
		cultural & appearance	44
TABLE	17	Biochemical identification of some Bacillus species	45

TABLE 18 Identity of some Bacillus species

CHAPTER 2

TABLE 1 Observations of vacuum packed <u>Amblygaster sirm</u> stored at 4⁰C

TABLE 2 Total volatile nitrogen, trimethyleamine, & pH

Amblygaster sirm stored at 4°C

XI

- TABLE 3 Total bacterial counts of vacuum packed <u>Amblygaster</u> <u>sirm</u> stored at 4⁰C
- TABLE 4 Dominant microflora isolated from vacuum packed <u>Amblygaster sirm</u> at initial & final stages of storage (4⁰C)
- TABLE 5 Observations of 2% potassium sorbate dipped, vacuum packed Amblygaster sirm stored at 4⁰C

80 6 Total volatile nitrogen, trimethylamine, & pH in 2% TABLE potassium sorbate dipped, vacuum packed Amblygaster sirm stored at 4°C 81 7 Total bacterial counts in potassium sorbate (2%) dipped TABLE vacuum packed Amblygaster sirm stored at 4⁰C 82 8 Dominant microflora isolated from 2% potassium sorbate TABLE dipped & vacuum packed Amblygaster sirm at the initial & final stages of storage (4°C) 83 TABLE 9 Observations of vacuum packed & irradiated Amblygaster sirm stored at 4°C 86 TABLE 10 Total volatile nitrogen, trimethylamine, & pH in vacuum

packed, irradiated Amblygaster sirm stored at

 $4^{\circ}C$

TABLE 11 Total bacterial counts in vacuum packed AmblygasterSirm, irradiated & stored at 4°C88TABLE 12 Dominant microflora isolated from vacuumpacked,irradiated Amblygaster sirm at the initial &
final stages of storage (4°C)89TABLE 13 Observations of salt saturated (5%) & vacuum packed
Amblygaster sirm stored at 4°C92TABLE 14 Total volatile nitrogen, trimethylamine, & pH in salt
saturated (5%), vacuum packed Amblygaster sirm
stored at 4°C93TABLE 15 Total bacterial counts in salt saturated (5%), & vacuum83

87

76

77

packed Amblygaster sirm stored at 4°C

TABLE 16 Dominant microflora isolated from salt saturated (5%), vacuum packed <u>Amblygaster sirm</u> at the initial & final stages of storage (4°C)
TABLE 17 Observations of vacuum packed <u>Amblygaster sirm</u> stored at 15°C

95

98

94

XII

TABLE 18 Total volatile nitrogen, trimethylamine & pH in vacuum
packed Amblygaster sirm stored at 15°C99TABLE 19 Total bacterial counts on vacuum packed Amblygaster
sirm stored at 15°C100TABLE 20 Dominant microflora isolated from vacuum packed
Amblygaster sirm at the initial & final stages of100

storage (15⁰C)

TABLE 21 Observations of 2% potassium sorbate dipped & vacuum packed Amblygaster sirm stored at 15°C 104 TABLE 22 Total volatile nitrogen, trimethylamine & pH in 2% potassium sorbate dipped & vacuum packed Amblygaster sirm stored at 15°C 105 TABLE 23 Total bacterial counts of 2% potassium sorbate dipped, vacuum packed Amblygaster sirm stored at 15°C 106 TABLE 24 Dominant microflora isolated from 2% potassium sorbate dipped& vacuum packed Amblygaster sirm at the initial & final stages of storage 107 TABLE 25 Observations of salt saturated (5%) & vacuum packed Amblygaster sirm stored at 15°C 110 TABLE 26 Total volatile nitrogen, trimethylamine & pH in salt saturated (5%), vacuum packed Amblygaster sirm stored at 15°C 111 TABLE 27 Total bacterial counts of salt saturated (5%) & vacuum packed Amblygaster sirm stored at 15°C 112 TABLE 28 Dominant microflora isolated from salt saturated (5%) & vacuum packed Amblygaster sirm at initial & final 113 stages of storage TABLE 29 Observations of vacuum packed & irradiated Amblygaster sirm stored at 15°C 116 TABLE 30 Total volatile nitrogen, trimethylamine & pH in vacuum packed, irradiated Amblygaster sirm stored at

15⁰C

TABLE 31 Total bacterial counts of vacuum packed. irradiatedAmblygaster sirm stored at 15°C118TABLE 32 Dominant microflora isolated from vacuum packed &

irradiated <u>Amblygaster</u> <u>sirm</u> at the initial & final stages of storage (15°C)

119

117

XIII

CHAPTER 3

1(a) Proximate analysis of immediately iced Amblygaster TABLE sirm both before packaging (raw) & during vacuum packaged (heat sterilized) storage, (batch A) 139 139 (b) Organoleptic & visual characteristics 2(a) Proximate analysis of immediately iced Amblygaster TABLE sirm both before packaging (raw) & during vacuum

		packed (heat sterilized) storage, (batch B)	140
	(b)	Organoleptic & visual characteristics	140
TABLE	3(a)	Proximate analysis of 5 hour delayed iced	
		Amblygaster sirm both before packaging (raw) &	
		during vacuum packed (heat sterilized) storage,	
		(batch A)	141
	(b)	Organoleptic & visual characteristics	141
TABLE	4(a)	Proximate analysis of 5 hour delayed iced	
		Amblygaster sirm both before packaging (raw) &	
		during vacuum packed (heat sterilized) storage,	
		(batch B)	142
	(b)	Organoleptic & visual characteristics	142

TABLE 5(a) Proximate analysis of 10 hour delayed iced

Amblygaster sirm both before packaging (raw) & during vacuum packaged (heat sterilized) storage, (batch A)

143

144

147

(b) Organoleptic & visual characteristics 143

6(a) Proximate analysis of 10 hour delayed iced TABLE

> Amblygaster sirm both before packaging (raw) & during vacuum packed (heat sterilized)

storage, (batch B)

(b) Organoleptic & visual characteristics 144

TABLE F_o values calculated by thermal process (vacuum - 7 packs / retorted) 145

145

- Values obtained by Gillespy's method TABLE 8
- TABLE 9 Percentage drained mass of vacuum packed, heat

sterilized Amblygaster sirm 146

TABLE 10 Proximate composition of vacuum packed heat

sterilized Amblygaster sirm

XIV

LIST OF FIGURES

CHAPTER 1

FIGURE 1 Change in total bacterial count of <u>Amblygaster</u> <u>sirm</u> stored in ice at 0, 5 & 10 hours after landing

FIGURE 2 Total bacterial count of Amblygaster sirm from

flesh & surface when stored at $30^{\circ}C$ & $20^{\circ}C$

at 0, 5 & 10 hours after landing

CHAPTER 2

FIGURE 1 Change in total aerobic (ae) & anaerobic (an) counts at incubation temperatures of 30°C, 5°C (ae) & 35 °C (an) obtained from vacuum packed <u>Amblygaster sirm</u> stored at 4°C 78 FIGURE 2 Change in total aerobic (ae) & anaerobic (an) counts at incubation temperatures of 30°C, 5°C (ae) & 35°C (an) obtained from potassium sorbate (2%) treated vacuum packed <u>Amblygaster sirm</u>

stored at 4⁰C

Change in total aerobic (ae) & anaerobic (an) counts FIGURE 3 at incubation temperatures of 30°C, 5°C (ae) & 35°C (ae) obtained from irradiated & vacuum packed Amblygaster sirm stored at 4°C 90 Change in total aerobic (ae) & anaerobic (an) counts FIGURE 4 at incubation temperatures of 30°C, 5°C (ae) & 35°C (an) obtained from salt saturated(5%), & vacuum packed Amblygaster sirm stored at 4°C 96 Change in total aerobic (ae) & anaerobic (an) counts FIGURE 5 at incubation temperatures of 30°C, 5°C (ae) & 35°C (an) obtained from vacuum packed,

47

47

<u>Amblygaster sirm</u> stored at 15°C

FIGURE 6 Change in total aerobic (ae) & anaerobic (an) counts

at incubation temperatures of 30°C, 5°C

(ae) & 35^oC (an) obtained from potassium sorbate

(2%) treated & vacuum packed <u>Amblygaster sirm</u> stored at 15°C

XV

~

FIGURE 7 Change in total aerobic (ae) counts at incubation temperatures of 30°C, 5°C (ae) obtained from salt saturated (5%) & vacuum packed <u>Amblygaster sirm</u> stored at 15°C FIGURE 8 Change in total aerobic (ae) counts at incubation temperatures of 30°C, 5°C (ae) obtained from irradiated & vacuum packed <u>Amblygaster sirm</u>

stored at 15°C

4

114

٠

1

.

r · ·

.

XVI

LIST OF ANNEXES

CHAPTER 1

Scheme prepared according to Shewan, Hobbs & Hodgkiss ANNEX 1 (1960), Cowan & Steel (1977), Lee & Pfeifer (1975) for the preliminary identification of microflora

53

54

55

56

57

ANNEX 2 Scheme prepared according to Hendrie & Shewan (1979) for the identification of some oxidative Pseudomonas species

- ANNEX 3 Scheme prepared according to Hendrie & Shewan (1979) for the identification of some Pseudomonas & Alteromonas species which do not produce acid from O/F medium
- ANNEX 4 Scheme prepared according to Baird-Parker (1974) & (1979), Genus Micrococcus cohn 1872, 151
- ANNEX 5 Scheme prepared according to Gibson & Gorden (1974) Genus Bacillus Cohn 1872, 174

CHAPTER 3

152-157 ANNEX 1 Calculation of $F_0 - By$ a thermal process ANNEX 2 Calculation of F_0 - By Gillespy's method 158-164