CONTENTS

Page No

I. LIST OF TABLES

4

4

20

25

II.	LIST OF FIGURES	X
III.	LIST OF APPENDICES	xii
IV.	LIST OF PLATES	xii
V.	ACKNOWLEDGEMENTS	xiii
VI.	ABSTRACT	XV
1.	INTRODUCTION	1

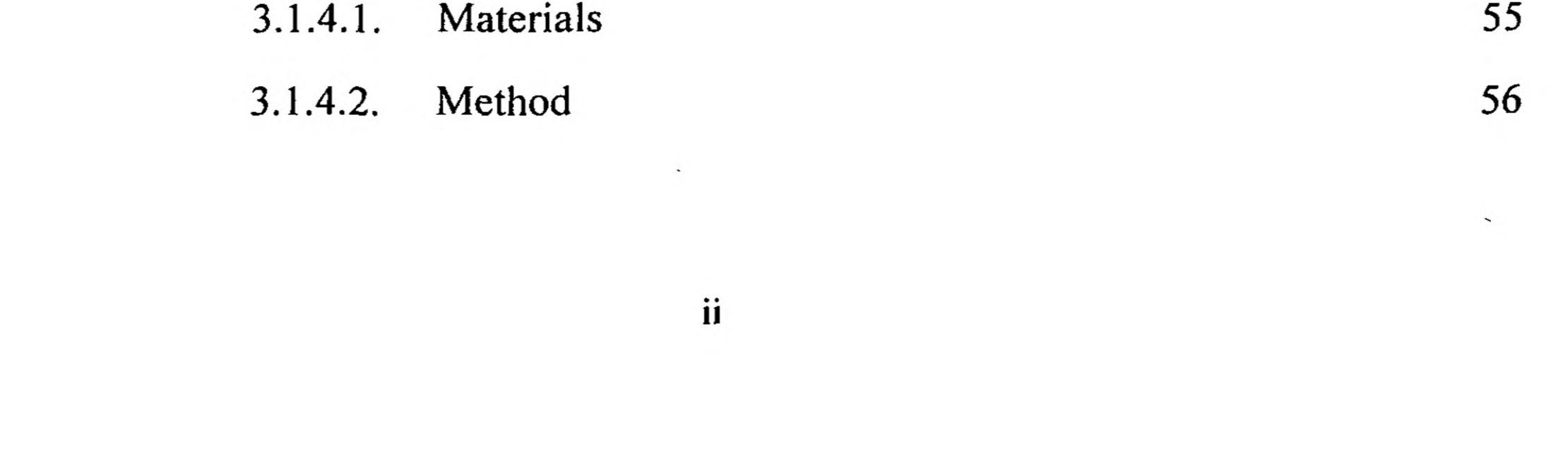
2. LITERATURE REVIEW

2.1. Composition of Fish Lipids

	2.1.1. Fatty acids	
	2.1.2. Neutral lipids	
	2.1.3. Polar lipids	1
2.2.	Distribution of Lipids in Fish	12
2.3.	Extraction Modification and Utilization of Fish Lipids	14
	2.3.1. Extraction of fish lipids	14
	2.3.2. Modification of fish lipids	1
	2.3.3. Utilization of fish lipids	10
2.4.	Analysis of Composition and Quality of Fish Lipids	18
	2.4.1. Isolation and purification of fish lipids	1

2.4.2. Determination of lipid classes and fatty acid profile

i


2.4.3. Determination of quality of the fish lipids

2.5.	Nutritional and Pharmaceutical Importance of Fish Lipids		
	2.5.1.	Fatty acids	2'
	2.5.2.	Cholesterol	3
	2.5.3.	Vitamins	32
	2.5.4.	Calorific value	32
2.6.	Change	es in the Lipids	32
	2.6.1.	Lipid autoxidation	33

	2.6.2.	Photooxygenation	35
	2.6.3.	Lipid autolysis	39
	2.6.4.	Interaction between lipids and proteins	41
2.7.	Preserv	vation of Lipids	42
	2.7.1.	Storage at low temperature	43
	2.7.2.	Packaging	43
	2.7.3.	Uses of antioxidants in preservation of fish lipids	44
EXP	ERIMEN	NTAL	52
3.1.	Proxim	ate Composition of Fish	52

3.

	3.1.1.	Determir	nation of moisture	52
		3.1.1.1.	Materials	52
		3.1.1.2.	Method	52
•	3.1.2.	Determin	nation of ash	53
		3.1.2.1.	Materials	53
		3.1.2.2.	Method	53
	3.1.3.	Determin	ation of lipid	54
		3.1.3.1.	Materials	54
		3.1.3.2.	Method	54
	3.1.4.	Determin	ation of protein	55

-

3.2.	Extraction and Quality Determination of Fish Lipids				
	3.2.1.	Extraction	on of fish lip	ids	57
		3.2.1.1.	Extraction	by wet rendering	57
			3.2.1.1.1.	Materials	57
			3.2.1.1.2.	Method	58
		3.2.1.2.	Extraction	by steaming	58
			3.2.1.2.1.	Materials	58

		3.2.1.2.2.	Method	58
	3.2.1.3.	Acid silag	e extraction	58
		3.2.1.3.1.	Materials	58
		3.2.1.3.2.	Method	59
	3.2.1.4.	Microbial	silage extraction	59
		3.2.1.4.1.	Materials	59
		3.2.1.4.2.	Method	59
	3.2.1.5.	Bligh & D	yer extraction	60
		3.2.1.5.1.	Materials	60
		3.2.1.5.2.	Method	60
3.2.2.	Determin	nation of qua	ality of extracted fish lipids	60
	3.2.2.1.	Determina	ation of peroxide value	60
		3.2.2.1.1.	Materials	60
		3.2.2.1.2.	Method	61
	3.2.2.2.	Determina	tion of free fatty acid value	62
		3.2.2.2.1.	Materials	62
		3.2.2.2.2.	Method	62
	3.2.2.3.	Determina	tion of iodine value	63
		3.2.2.3.1.	Materials	63
		3.2.2.3.2.	Method .	63
	3.2.2.4.	Determina	tion of fatty acid composition	64

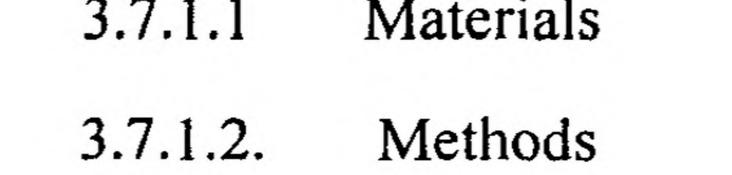
3.2.2.4. Determination of fatty acid composition

iii

64

65

3.2.2.4.1. Materials


3.2.2.4.2. Method

3.3.	Lipid and Fatty Acid Composition of Selected Fish		
	3.3.1.	Materials	6
	3.3.2.	Method	67
3.4.	Fatty Acid Composition (Total) of Small Pelagics		
	3.4.1.	Materials	69
	3.4.2.	Method	69
3.5.	Seasona	al Variation of Quality and Quantity of Fish Lipids in	70

	Selecte	d Species		
	3.5.1.	Material	S	70
	3.5.2.	Method		70
3.6.	Quality	Changes of	of Fish and Fish Lipids During Storage	71
	3.6.1.	Storage o	f fish and fish lipids at room temperature (32°±1C)	71
		3.6.1.1.	Materials	71
		3.6.1.2.	Method	71
	3.6.2.	Storage o	f fish in ice (0°±1 C)	72
		3.6.2.1.	Materials	72
		3.6.2.2.	Method	72

	3.6.3.	Storage o	73	
		3.6.3.1.	Materials	73
		3.6.3.2.	Method	73
	3.6.4.	Determin	ation of total volatile bases (TVB) by	74
		Conway-	Byrnes method	
		3.6.4.1.	Materials	74
		3.6.4.2.	Method	75
3.7.	Preserv	vation of Fi	sh Lipids Using Natural Anti-oxidants	76
	3.7.1.	Studies o	n the efficiency of some natural plant product	76
		extracts i	n the preservation of fish lipids.	
		3.7.1.1	Materials	76

77

iv

3.7.2.	Quantific	Quantification of preservative action of crude		
	Indian gooseberry extract			
	3.7.2.1.	Materials	78	
	3.7.2.1.	Method	78	
3.7.3.	Evaluatio	n of anti-oxidant activity of Indian gooseberry	79	
	using diff	erent solvent systems		
	3.7.3.1.	Materials	79	

		3.7.3.2.	Method	79
	3.7.4.	Purification	on of crude Indian gooseberry extract and the	80
		examinati	ion of preservative action of purified fractions	
		3.7.4.1.	Materials	80
		3.7.4.2.	Method	81
RES	ULTS A	ND DISC	USSION	83
4.1.	Proxin	nate Compo	osition of Fish	83
	4.1.1	Moisture	content	83
	4.1.2.	Ash conte	ent	83
	4.1.3.	Lipid con	ntent	84
	4.1.4.	Protein co	ontent	85
4.2.	Extract	tion and Qu	ality Determination of Fish Lipids	88
4.3.	Lipid a	and Fatty A	cid Composition of Selected Fish	94
	4.3.1.	Lipid co	mposition of selected fish species	94
	4.3.2.	Fatty acid	d composition of lipid classes of White sardinella	96
4.4.	Fatty A	cid Compo	sition of Small Pelagics	98
	4.4.1.	Saturated	fatty acids	98
	4.4.2.	Monouns	aturated fatty acids	99
	4.4.3.	Polyunsat	urated fatty acids	99
4.5.	Seasona	al Variation	n of Quality and Quantity of Fish Lipids	108

4.5. Seasonal Variation of Quality and Quantity of Fish Lipids

v

in Selected Species

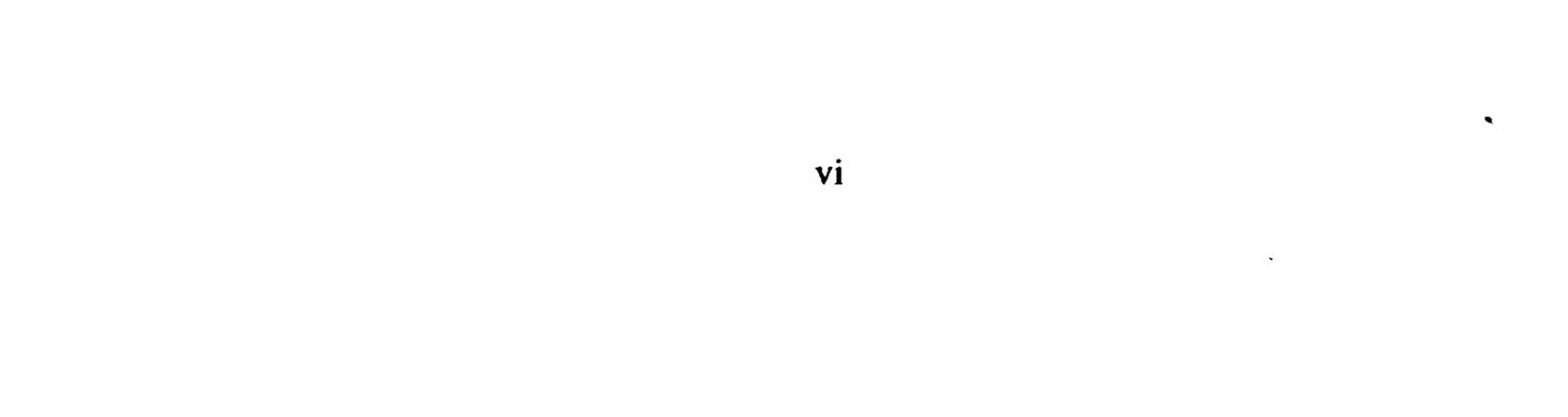
4.

4.5.1. Variation of lipid content

108

	4.5.2.	Variation of fatty acids	110
4.6.	Quality Changes of Fish and Fish Lipids During Storage		115
	4.6.1.	Changes observed in the quality of fish and fish lipids	115
		during storage at room temperature $(32^\circ \pm 1C)$	
	4.6.2.	Changes observed in the quality of fish and lipids during	118
		ice storage ($0^{\circ} \pm 1 C$)	

4.6.3. Changes observed in the quality of fish and fish lipids 120


during storage at $-18^{\circ} \pm 1C$

Preservation of Fish Lipids Using Natural Anti-oxidants 4.7. 126 4.7.1. Studies on the effect of some natural plant extracts in the 126 preservation of fish lipids 4.7.2 Quantification of preservative action of crude Indian 135 Gooseberry extract Evaluation of anti-oxidant activity of Indian gooseberry 4.7.3. 141 using different solvent systems to extract active components Investigation of antioxidant activity of purified compounds 4.7.4. 148

from Indian gooseberry

5. CONCLUSIONS	155
LITEATURE CITED	161
APPENDIX	182
PLATES	184
RESEARCH PUBLICATIONS AND COMMUNICATIONS F	TROM 189
THE STUDY	

•

LIST OF TABLES

Page No

11

116

Table-2.1.1Intramusclar phospholipid distribution of Sucker (Catostomus
commersoni).

Table-2.1.2 Comparison between fatty acids of phospholipids and triplycerides 11

1 4010-2.1.2	in fish species.	11
Table-2.3.1	Lipid content of principal fish used in fish lipid production.	15
Table-2.5.1	Cholesterol content in some fish and seafood lipids.	31
Table-2.6.1	Relative rates of oxidation.	36
Table-4.1.1	Proximate composition of fish.	86
Table-4.2.1	Percentage of lipids extracted and its quality	89
Table-4.2.2	Changes of fatty acids of fish lipids during extraction	91
Table-4.3.1	Lipid composition of fish	94

Table-4.3.2	Fatty acid composition of lipid classes of White sardinella.	97
Table-4.4.1	List of species studied for fatty acid composition.	104
Table-4.4.2	Fatty acid composition of small pelagics.	105
Table-4.4.3	Content of fatty acids present in small pelagics.	106
Table-4.5.1	Seasonal variation of fatty acid composition of White sardinella	111
Table-4.5.2	Seasonal variation of fatty acid composition of Thryssa.sp.	112
Table-4.6.1.1	Changes observed in the quality of fish during storage at room temperature	115

Table-4.6.1.2 Changes observed in the quality of extracted fish lipids during storage at room temperature

vii

Table-4.6.2.1 Changes observed in the quality of fish and fish lipids during ice 118 storage.

Table-4.6.3.1 Changes of peroxides, free fatty acids and total volatile nitrogen of 121 fish and fish lipids during storage at -18°C.

Table-4.6.3.2 Variation of fatty acid composition of fish during storage at-18°C. 124

Table-4.6.3.3 Variation of fatty acid composition of extracted fish lipids during 125 storage at -18°C.

Table-4.7.1.1 Levels of peroxides of fish lipids treated with plant component 127 extracts during storage at 30°C

Table-4.7.1.2 Levels of free fatty acids of fish lipids treated with plant component 128 extracts during storage at 30°C

Table-4.7.1.3 Levels of saturated fatty acids of fish lipids treated with Indian 130 Gooseberry (P. emblica) extract during storage at 30°C

Table-4.7.1.4 Levels of monounsaturated fatty acids of fish lipids treated with 131 Indian Gooseberry (*P. emblica*) extract during storage at 30°C

Table-4.7.1.5 Levels of polyunsaturated fatty acids of fish lipids treated with 133 Indian Gooseberry (*P. emblica*) extract during storage at 30°C

Table-4.7.2.1 Levels of peroxides of fish lipids treated with different

136 concentrations of Indian gooseberry during storage at 30°C

Table-4.7.2.2 Levels of free fatty acids of fish lipids treated with different 137 concentrations of Indian gooseberry during storage at 30°C

Table-4.7.2.3 Levels of saturated fatty acids of fish lipids treated with different 138 concentrations of Indian gooseberry during storage at 30°C

Table-4.7.2.4 Levels of monounsaturated fatty acids of fish lipids treated with 139 different concentrations of Indian gooseberry during storage at 30°C

Table-4.7.2.5 Levels of polyunsaturated fatty acids of fish lipids treated with 140 different concentrations of Indian gooseberry during storage at 30°C

Table-4.7.3.1 Levels of peroxides in fish lipids during storage with different 142 solvent extracts of Indian Gooseberry.

viii

- Table-4.7.3.2 Levels of free fatty acids in fish lipids during storage with different 143 solvent extracts of Indian Gooseberry.
- Table-4.7.3.3 Variation of saturated fatty acids of fish lipids treated with different 144 solvent extracts of Indian gooseberry during storage at 30°C
- Table-4.7.3.4 Variation of monounsaturated fatty acids of fish lipids treated with 145 different solvent extracts of Indian gooseberry during storage at 30°C

- Variation of polyunsaturated fatty acids of fish lipids treated with Table-4.7.3.5 146 different solvent extracts of Indian gooseberry during storage at 30°C
- Table-4.7.4.1 Levels of peroxides in fish lipids during storage with fractionated 148 Indian gooseberry
- Table-4.7.4.2 Levels of free fatty acids in fish lipids during storage with 150 fractionated Indian gooseberry
- Table-4.7.4.3 Levels of saturated fatty acids in fish lipids during storage with 151 fractionated Indian gooseberry
- Table-4.7.4.4 Levels of monounsaturated fatty acids in fish lipids during storage 152 with fractionated Indian gooseberry

153

Table-4.7.4.5 Levels of polyunsaturated fatty acids in fish lipids during storage with fractionated Indian gooseberry

LIST OF FIGURES

Figure-2.1.1Triacylglycerol (Triglyceride) of fish lipids.4Figure-2.2.1Distribution of total fat in various body parts and organs of mackerel13(S. scombrus) and capelin (Mallotus villosus) of Norwegian origin.13

Page No

131

Figure-2.5.1	Key steps in conversion of dietary linoleic acid (18:2 n-6) to arachidonic acid (20:4 n-6) and thence to prostanoids and leukotrienes	28
Figure-2.7.1	Chemical structures of the most commonly used synthetic antioxidants	46
Figure-2.7.2	Chemical structures of a selection of natural compounds with antioxidant properties	48
Figure-3.2.1	Temperature variation of the column used in the fatty acid analysis.	66
Figure-4.1.1	Lipid content of fish	87
Figure-4.4.1	The relationship between lipid content (%) and n-3 polyunsaturated fatty acids (%)	103
Figure-4.5.1	Seasonal variation of lipid content in White sardinella	109

Figure-4.5.2	Seasonal variation of lipid content in Thryssa sp	109
Figure-4.5.3	Seasonal variation of lipid content in Streaked spinefoot	109
Figure-4.5.4	Seasonal variation of lipid content in Silver belly	109
Figure-4.7.1.1	Variation of peroxides of fish lipids treated with plant component extracts during storage at 30°C.	127
Figure-4.7.1.2	Variation of free fatty acids of fish lipids treated with plant component extracts during storage at 30°C	129
Figure-4.7.1.3	Variation of saturated fatty acids of fish lipids treated with Indian gooseberry extract during storage at 30°C	130

Figure-4.7.1.4 Variation of monounsaturated fatty acids of fish lipids treated with Indian gooseberry extract during storage at 30°C

Figure-4.7.1.5 Variation of polyunsaturated fatty acids of fish lipids treated with 133 Indian gooseberry extract during storage at 30°C

Х

- Figure-4.7.2.1 Variation of peroxides of fish lipids treated with different 136 concentrations of Indian gooseberry during storage at 30°C
- Figure-4.7.2.2 Variation of free fatty acids of fish lipids treated with different 137 concentrations of Indian gooseberry during storage at 30°C
- Figure-4.7.2.3 Variation of saturated fatty acids of fish lipids treated with different 138 concentrations of Indian gooseberry during storage at 30°C

Figure-4.7.2.4 Variation of monounsaturated fatty acids of fish lipids treated with 139

different concentrations of Indian gooseberry during storage at 30°C

- Figure-4.7.2.5 Variation of polyunsaturated fatty acids of fish lipids treated with 140 different concentrations of Indian gooseberry during storage at 30°C
- Figure-4.7.3.1 Variation of peroxides of fish lipids treated with different solvent 142 extracts of Indian gooseberry during storage at 30°C
- Figure-4.7.3.2 Variation of free fatty acids of fish lipids treated with different solvent 143 extracts of Indian gooseberry during storage at 30°C
- Figure-4.7.3.3 Variation of saturated fatty acids of fish lipids treated with different 144 solvent extracts of Indian gooseberry during storage at 30°C
- Figure-4.7.3.4 Variation of monounsaturated fatty acids of fish lipids treated with 145 different solvent extracts of Indian gooseberry during storage at 30°C

Figure-4.7.3.5 Variation of polyunsaturated fatty acids of fish lipids treated with 147 different solvent extracts of Indian gooseberry during storage at 30°C

Figure-4.7.4.1 Changes in the levels of peroxides in fish lipids during storage with 149 fractionated Indian gooseberry

Figure-4.7.4.2 Changes in the levels of free fatty acids in fish lipids during storage 150 with fractionated Indian gooseberry

Figure-4.7.4.3 Changes in the levels of saturated fatty acids in fish lipids during 151 storage with fractionated Indian gooseberry

Figure-4.7.4.4 Changes in the levels of monounsaturated fatty acids in fish lipids 152 during storage with fractionated Indian gooseberry

Figure-4.7.4.5 Changes in the levels of polyunsaturated fatty acids in fish lipids during storage with fractionated Indian gooseberry

xi

LIST OF APPENDICES

Page No

Appendix –1 Chilaw and Negombo fish landing sites in North-Western coast Of Sri Lanka.

182

183

Appendix –2 Calibration curve for lipid class analysis

LIST OF PLATES

٤

Plate – 1	Gas chromatograph (Shimadzu GC-14A)	184
Plate – 2	Lipids of White sardinella, <i>Thryssa .sp</i> , Streaked spinefoot and Silver belly developed on TLC plates.	185
Plate – 3	Fish species selected for seasonal variation studies	186
Plate – 4	Fruit of Indian Gooseberry	187
Plate – 5	Soxhlet extraction of Indian gooseberry	188

xii