TABLE OF CONTENTS

Page

• 1

iv

1

11

V1

•

ABSTRACT ACKNOWLEDGEMENTS

-

• • •

•

TABLE OF CONTENTS	vi
LIST OF FIGURES	xi
LIST OF TABLES	xiv
LIST OF ABBREVIATIONS	xvi

CHAPTER 1 INTRODUCTION

CHEMICAL AND STRUCTURAL CHARACHTERISTICS CHAPTER 2 **OF SHARK LIVER LIPIDS**

Inter-species changes of lipid compositions in liver of Sub Chapter 2.1 pelagic sharks from the Indian Ocean

2.1.1 Introduction	11
2.1.2 Materials and Methods	13
2.1.2.1 Samples	13
2.1.2.2 Chemicals	14
2.1.2.3 Lipid extraction and analysis of lipid classes	14
2.1.2.4 Separation of triacylglycerols	14
2.1.2.5 Analysis of fatty acid composition by gas chromatography	14
2.1.2.6 Statistical analysis	15
2.1.3 Results and Discussion	15
2.1.3.1 Liver lipid content and lipid class composition of inter species	15
2.1.3.2 Fatty acid composition of total lipids and triacylglycerols	18
2.1.4 Conclusions	21

Sub Chapter 2.2		Intra-species variations in lipid classes, fatty aci	id
		compositions and tocopherols of salmon shark liv	ver
		lipids with season	22
	2.2.1 Introdu	ction	22
	2.2.2 Material	ls and Methods	24

· ·

·

•

_

2.2.2.1	Samples	24
2.2.2.2	Chemicals	25
2.2.2.3	Lipid extraction and analysis of lipid classes	25
2.2.2.4	Separation of triacylglycerols	25
2.2.2.5	Analysis of fatty acid composition by gas chromatography	24
2.2.2.6	Determination of tocopherols and marine derived tocopherol (MDT)	
	in lipids	26
2.2.2.7	Statistical analysis	26
2.2.3 Re	sults and Discussion	26
2.2.3.1	Location, morphometric data, and lipid content	26
2.2.3.2	Lipid class composition	27
2.2.3.3	Fatty acid composition in total lipids	29
2.2.3.4	Fatty acid composition in triacylglycerols	29
2.2.3.5	Marine derived tocopherol (MDT) composition	32
2.2.3.6	Principal component analysis	33
2.2.4 Co	nclusions	34
Sub Chapte	er 2.3 Molecular species composition and stereo specific	

· · ·

-

•

-

•

ab Chapter 2.3 Molecular species composition and stereo specific distribution of fatty acid in triacylglycerols of pelagic shark liver lipids

2.3.1	Introduction	35
2.3.2	Material and Methods	36
2.3.2	.1 Samples	36
2.3.2	.2 Chemicals	36
2.3.2	.3 Preparation of lipid samples	37
2.3.2	.4 Analysis of triacylglycerols by high performance liquid chromatogra	aphy
	with evaporating light scattering detector (HPLC-ELSD)	37
2.3.2	5 Analysis of triacylglycerols by high performance liquid	
*.	chromatography with atmospheric pressure chemical	
► ,	ionization-mass spectrometry (HPLC-APCI-MS)	37
2.3.2	8.6 Determination of positional distributions of fatty acids	
	in triacylglycerols	37

2.3.2.6.1	Hydrolysis of triacylglycerols by pancreatic lipase	37
2.3.2.6.2	Separation of 2-monoacylglycerols (2-MAG) by	
	thin layer chromatography (TLC)	38
2.3.2.6.3	Analysis of fatty acid composition by gas chromatography	38
2.3.2.7 Sta	atistical analysis	38
2.3.3 Result	ts and Discussion	3 9

-

Table of	of Cor	ntents
----------	--------	--------

2.3.3.1	Identification of molecular species of triacylglycerols	39
2.3.3.2	Molecular species compositions of triacylglycerols	45
2.3.3.3	Positional distribution of fatty acids in triacylglycerols	51
2.3.4 Con	loclusions	54

PHENOLIC COMPOSITION AND ANTIOXIDANT CHAPTER 3 ACTIVITY OF SWEET BASIL (*Ocimum basilicum*)

Sub Chapter 3.1 Isolation and identification of major phenolic compounds	
present in sweet basil (<i>Ocimum basilicum</i>)	55
3.1.1 Introduction	55
3.1.2 Materials and Methods	56
3.1.2.1 Samples and chemicals	56
3.1.2.2 Preparation of samples	57
3.1.2.3 Preparation of crude extract of sweet basil (Ocimum basilicum)	57
3.1.2.4 Assessment of extraction efficiency of phenolic compounds	58
3.1.2.5 Fractionation of crude methanolic extract by Sephadex LH-20	
column chromatography	58
3.1.2.6 Determination of total phenolic contents	58
3.1.2.7 Assay for 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical	
scavenging effect	58
3.1.2.8 Evaluation of antioxidant activity using oxidation of the soy	
phosphatidylcholine liposome model	59
3.1.2.8.1 Preparation of soy phosphatidylcholine liposome model	59
3.1.2.8.2 Determination of phosphatidylcholine hydroperoxide	59
3.1.2.9 Proton and carbon Nuclear Magnetic Resonance (1H NMR and	
¹³ C NMR) spectroscopy	60
3.1.2.10 HPLC- photodiode array detector (PAD) analysis	60
3.1.2.11 Atmospheric Pressure Chemical Ionization Mass Spectrometry	60
3.1.2.12 Reproducibility of oxidation experiments and statistical analysis	61
3.1.3 Results and Discussion	61

•.

3.1.3.1 Extraction efficiency of phenolic compounds by different solvents 61 3.1.3.2 Sephadex LH-20 column chromatography 62 3.1.3.3 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging efficiency 64 3.1.3.4 Inhibition activity of soy phosphatidylcholin liposome oxidation 65 67 3.1.3.5 Proton and Carbon Nuclear Magnetic Resonance spectroscopy

•

72

76

3.1.3.6 Atmospheric Pressure Chemical Ionization Mass Spectrometry (APCI-MS) and identification of phenolic compounds 3.1.4 Conclusions

Antioxidant behavior of rosmarinic acid in Sub Chapter 3.2 polyunsaturated fatty acid rich phosphatidylcholine liposome systems

.

Introduction 3.2.1

• •

•

78

78

3.2.2 Materials and Methods	80
3.2.2.1 Samples and chemicals	80
3.2.2.2 Separation of phenolic compound from sweet basil	80
3.2.2.3 Preparation of soy and fish phosphatidylcholine liposome	80
3.2.2.4 Determination of fatty acid composition	80
3.2.2.5 Assay for 2,2·diphenyl·1·picrylhydrazyl (DPPH) free radical	
scavenging effect	81
3.2.2.6 Assay of the inhibition activity on oxidation in phosphatidylcholine	
liposome system	81
3.2.2.6.1 Determination of phosphatidylcholine hydroperoxide	81
3.2.2.6.2 Quantification of a-tocopherol presence in liposome system	81
3.2.2.6.3 Quantification of phenolic compounds presence in	
liposome system	82
3.2.2.7 Reproducibility of oxidation experiments and statistical analysis	82
3.2.3 Results and Discussion	82
3.2.3.1 2,2-diphenyl-1-picrylhydrazyl free radical scavenging efficiency	82
3.2.3.2 Fatty acid composition of phosphatidylcholines	84
3.2.3.3 Oxidative stability of soy and fish phosphatidylcholine liposomes	85
3.2.3.4 Antioxidant behaviors of rosmarinic acid in phosphatidylcholine	
liposome systems	87
3.2.3.4.1 Soy phosphatidylcholine liposome system	87
3.2.3.4.2 Fish phosphatidylcholine liposome systems	91
3.2.4 Conclusions	94

THE EFFECT OF NATURAL ANTIOXIDANTS ON CHAPTER 4

OXIDATION OF SHARK OIL-IN-WATER EMULSIONS

٠

4.1 Introduction

- 4.2 Materials and Methods
 - 4.2.1 Samples and chemicals

95

97

97

4.2.2	Preparation of crude extracts	97
4.2.3	Separation of shark liver lipid triacylglycerols (TAG)	98
4.2.4	Determination of fatty acid composition of TAGs	98
4.2.5	Preparation of emulsions	98
4.2.6	Determination of the progress of oxidation	99
4.2.7	Measuring of conjugated dienes	99
4.2.8	Determination of volatiles by head space solid phase micro	
	extraction (HS-SPME) method	99

1

-

. .

- -

4.2.9 Determination of v	volatile compounds by gas chromatograph analysis	99
4.2.10 Identification of v	volatile compounds by gas chromatography-mass	
spectrometry (G	C-MS)	100
4.2.11 Statistical analys	is	100
4.3 Results and Discussio	ns	101
4.3.1 Total extractable c	omponents in plant materials	101
4.3.2 Fatty acid composition	ition of shark liver lipid triacylglycerols (TAG)	101
4.3.3 Oxidative stability	ofemulsions	102
4.3.3.1 Formation of c	onjugated dienes	102
4.3.3.2 Development of	of volatile compounds	103
4.3.4 Principal compone	nt analysis for volatile products	10 9
4.3.5 Sensory analysis		110

4.4 Conclusions

•

- .

• .

•

CHAPTER 5	SUMMARY AND CONCLUSIONS	113
LIST OF LITE	ERATURE CITED	117
CONTRIBUT	ONS FROM THE STUDY	132

.

112

X

Page

LIST OF FIGURES

<u>*</u>

۰. ۴.

Species composition of pelagic sharks in Pacific and Indian Ocean 5 Figure 1.2

Figure 1.3	Schematic flow of the study	10
Figure 2.1	Selected shark species for the study	12
Figure 2.2	The major fish markets in the West sea [.] coast of Sri Lanka	13
Figure 2.3	Chemical structures of a tocopherol, a tocotrienol, a –tocomonoenol and marine derived tocopherol (MDT)	23
Figure 2.4	Salmon shark <i>(Lamna ditropis</i>)	23
Figure 2.5	The area of occurrence of salmon shark in the Pacific Ocean and sampling locations in the winter and the summer	24
Figure 2.6	Intra-species variation of marine derived tocopherol compositions in liver lipids of salmon shark with season	33
Figure 2.7	Principal component analysis scatter plot of the variables analyzed for the liver lipid of salmon shark with season and gender	34
Figure 2.8	The scheme of fragmentation of triacylglycerol at positive ionization mode of APCI	39
Figure 2.9	HPLC-APCI-MS base peak ion chromatograms obtained for Liver lipid triacylglycerols of oceanic white tip shark	41
Figure 2.10	APCI mass spectra of triacylglycerol (ODD) in shark liver lipid	42
Figure 2.11	APCI mass spectra of triacylglycerol (PDD) in shark liver lipid	42
Figure 2.12	APCI mass spectra of triacylglycerol (POD) in shark liver lipid	43
Figure 2.13	APCI mass spectra of triacylglycerol (PPD) in shark liver lipid	43
Figure 2.14	APCI mass spectra of triacylglycerol (POO) in shark liver lipid	44

APCI mass spectra of triacylglycerol (PPO) in shark liver lipid Figure 2.15 **44**

• •.

٠

Figure 2.16 The HPLC-ELSD chromatograms of triacylglycerol molecular species of oceanic white tip and hammer head sharks liver lipids 46

Tendency of docosahexaenoic, eicosapentaenoic and docosapentaenoic **Figure 2.17** acids distribution in *sn*-2 position in shark liver triacylglycerols 51

-

xi

Figure 2.18	Tendency of oleic, palmitoleic and gadoleic acids distribution in <i>sn</i> -2 position in shark liver triacylglycerols	53
Figure 2.19	Tendency of palmitic, stearic and myristic acids distribution in <i>sn</i> ⁻ 2 position in shark liver triacylglycerols	53
Figure 3.1	Sweet basil (<i>Ocimum basilicum</i>)	57
Figure 3.2	Thin layer chromatogram of sweet basil extracted by different solvents	62

	Figure 3.3	The Sephadex LH-20 column chromatographic fraction profile of crude methanolic extract of sweet basil monitored at 280nm	63
	Figure 3.4	The DPPH free radical scavenging ability of different fractions separated from sweet basil and their effectiveness at different concentrations	64
	Figure 3.5	The inhibition activity on formation of phosphatidylcholin hydroperoxide by each fraction of sweet basil and by α-tocopherol in the oxidation of soy phosphatidylcholin liposome	65
	Figure 3.6	The synergestic inhibition activity on formation of PC hydroperoxide by each fraction (III · VI) of sweet basil and a-tocopherol in the oxidation of soy phosphatidylcholin liposome	66
	Figure 3.7	¹³ C NMR spectrum of the compound P-1	67
	Figure 3.8	¹ H NMR spectrum of the compound P-1	69
	Figure 3.9	$^{1}\text{H}-^{13}\text{C}$ correlation (COSY) spectrum of the compound P-1	70
	Figure 3.10	¹ H– ¹ H correlation (COSY) spectrum of the compound P ⁻ 1	71
	Figure 3.11	Chemical structure of rosmarinic acid	72
	Figure 3.12	APCI-Mass spectrums for rosmarinic acid	72
	Figure 3.13	HPLC chromatograms for the fractions (IV–VI) of sweet basil, obtained from octadecylsilane (ODS) column separation by HPLC monitored at 280 nm by photodiode array detector (PDA)	74
۰ ۰.	Figure 3.14	APCI-Mass spectrum for ceffeyol ester	76
	Figure 3.15	The DPPH free radical scavenging ability of rosmarinic acid and ascorbic acid with their effectiveness at different concentrations	83

Figure 3.16	Chemical structure of ascorbic acid	83
Figure 3.17	Chemical structure of phosphatidylcholine	85
Figure 3.18	The rates of phosphatidylcholine hydroperoxide formation in the oxidation of fish and soy phosphatidylcholine liposomes	86

.

.

·

xii

87

90

91

Figure 3.19The inhibition of phosphatidylcholine hydroperoxides formation in
the oxidation of soy phosphatidylcholine liposome by α-tocopherol
and rosmarinic acid

Figure 3.20The antioxidant consumption pattern in the oxidation of soy
phosphatidylcholine liposome by α-tocopherol
and rosmarinic acid

Figure 3.21The inhibition of phosphatidylcholine hydroperoxides formation
in the oxidation of fish phosphatidylcholine liposome by
a-tocopherol and rosmarinic acid

	Figure 3.22	The antioxidant consumption pattern in the oxidation of fish phosphatidylcholine liposome by α-tocopherol and rosmarinic	92
·	Figure 3.23	Formation of hydroperoxides in the oxidation of fish phosphatidylcholine liposome with presence of rosmarinic acid and ascorbic derivatives	9 3
	Figure 4.1	Indian Gooseberry (<i>Emblica officinalis</i>)	97
	Figure 4.2	Formation of conjugated dienes in shark liver oil emulsions with different antioxidants by auto oxidation at 35°C in dark	103
	Figure 4.3	Chromatographic profiles of the PFPH-derivatives of the volatile products of shark liver oil-in-water emulsions. Iinitial sample, Tocopherol (90hrs) and Ascorbic acid (90 hrs)	105
	Figure 4.4	Chromatographic profiles of the PFPH-derivatives of the volatile products of shark liver oil-in-water emulsions. Iinitial sample, Sweet basil extract (90hrs) and Control (90 hrs)	106
	Figure 4.5	Development of trance, trance 2, 4-heptadienal in shark liver oil-in-water emulsions by auto-oxidation at 35 °C in dark	107
	Figure 4.6	Development of 3,5-octadiene-2-one in shark liver oil-in-water emulsions by auto-oxidation at 35 °C in dark	107
	Figure 4.7	Development of 1-penten·3-ol in shark liver oil-in-water emulsions by auto-oxidation at 35 °C in dark	108
• •.	Figure 4.8	Principal component scatter plot of the variables analyzed with the time for the different antioxidants introduced to the emulsion systems with the time that oxidation was progressed	10 9
	Figure 4.9	Appearance of the emulsion systems after 90 days storage	110

•

•

•

+

•

-

xiii

List of Tables

Page

LIST OF TABLES

Table 2.1	The liver lipid contents and morphometric data of the sharks species from Indian Ocean subjected for the study	15
Table 2.2	The lipid class composition of the liver lipid of five shark species from the Indian Ocean	16
Table 2.3	Fatty acid composition of the total liver lipids of five shark species from the Indian Ocean	19
Table 2.4	Fatty acid composition in triacylglycerols of five pelagic shark species from the Indian Ocean	20
Table 2.5	The morphmetric data of salmon shark subjected for the study	25
Table 2.6	The lipid class composition of liver lipid of salmon shark in the summer and the winter	28
	T (· · · · · · · · · · · · · · · · · ·	

- Table 2.7Intra- species variation of fatty acid composition of liver lipids
from salmon shark in the summer and the winter30Table 2.8Intra- species variation of fatty acid composition of liver lipid
triacylglycerols from salmon shark in the summer and the winter31Table 2.9Pseudomolecular ions along with their characteristic fragment
ions observed in APCI- mass spectrums of major shark liver
triacylglycerols40Table 2.10Relative proportions of major triacylglycerols molecular species40
- of liver lipids from pelagic sharks dwelling in Indian and Pacific Oceans
- Table 2.11Intra species variations of relative proportions of major
triacylglycerols molecular species in liver lipid from salmon
sharks in the summer and the winter
- Table 2.12
 Stereospecific distribution of fatty acids in liver lipids triglycerols

of six pelagic shark species from Indian and Pacific Oceans

Table 3.1Percentage recovery and total phenolic contents of fractionsobtained after column chromatography

Table 3.2

•

Pseudomolecular ions ([M+H]+ and [M-H]-), along with their characteristic fragment ions in the mass spectra of polyphenols responsible for the antioxidative activity of each fractions of sweet basil

XIV

47

48

50

63

75

89

101

Table 3.3Fatty acid compositions of phosphatidylcholines separatedfrom soy lecithin and salmon egg oil84

Table 3.4Inhibition rates and times of the peroxidation reaction in soyand fish liposome model systems by rosmarinic acid

--

.

- Table 4.1Fatty acid composition of salmon shark triacylglycerols used
for the oil emulsions
- Table 4.2Major volatile compounds developed in shark oil emulsions in
auto-oxidation at 35 °C in dark as identified by HS-SPME /GC-MS104

XV

List of Abbreviations

LIST OF ABBREVIATIONS

ANOVA·Analysis of varianceAOCS·American Oil Chemist's SocietyAPCI-MS·Atmospheric Pressure Chemical Ionization-Mass SpectrometryBHA·Butylated hydroxyanisole

	BHT	-	Butylated hydroxytoluene
	BPI	-	Base peak ion
	DAG	-	Diacylglycerol
	DAGE	-	Diacylglycerol ethers
-	DHA	-	Docosahexaenoic acid
	DPA	-	Docosapentaenoic acid
	DPPH	-	2,2-diphenyl-1-picrylhydrazyl
	ELSD	-	Evaporating Light Scattering Detector
	EPA	-	Eicosapentaenoic acid
	FAME	-	Fatty acid metyl ester
	FAO	-	Food and Agriculture Organization
	FID	-	Flame Ionization Detector

· ·

.

.

-

•

	GC	-	Gas Chromatography
	GC·MS	- .	Gas Chromatography-Mass Spectrometry
	GLC	-	Gas Liquid Chromatography
	HC	-	Hydrocarbon
	HDL	-	High density lipoprotein
•	HPLC	-	High Performance Liquid Chromatography
	HS-SPME	-	Headspace-Solid Phase Micro Extraction
	LC-MS	-	Liquid Chromatography-Mass Spectrometry
•	MAG	-	Monoacylglycerol
	MDT	-	Marine derived tocopherols
	MeO-AMVN	-	2,2'-Azobis (4-methoxy-2,4-dimethylvaleronitrile
	MUFA	-	Monounsaturated fatty acid

NMR	-	Nuclear Magnetic Resonance
PAD	 ₩	Photodiode Array Detector
PC	-	Phosphatidylcholine
PCA	-	Principal component analysis
РСООН	- .	Phosphatidylcholine hydroperoxide
PFPH	-	Pentaflurophenylhydrazene

.

•

List of Abbreviations

.

PL	-	Phospholipids
PUFA	-	Polyunsaturated fatty acid
RI	-	Refractive index
\mathbf{SD}	-	Standard deviation
SE	-	Sterol esters
SFA	-	Saturated fatty acids
sn	-	Stereospecific number
ST	-	Sterols

•

TAG	-	Triacylglycerols
TLC	-	Thin Layer Chromatography
WE	-	Wax esters

-

xvii