Studies on the Phytoplankton of Inshore and Offshore Waters off Colombo and some Data on the Hydrological Conditions of these Waters

By
M. Duratratnam, T. Viceneshwara and L. M. Emmandel*

Malpas (1930) rendered a considerable amount of oceanographic data off the Gulf of Mannar in reporting his drift bottle experiments. Durairatnam (1963) studied the seasonal cycles of sea surface temperatures, salinities and phytoplankton in Puttalam Lagoon, Dutch Bay and Portugal Bay. Studies on the plankton of the inshore waters off Mandapam were made by Prasad (1954, 1956). Studies on the temperatures and salinities for the Bay of Bengal have been reported by Sewell (1925), Das (1954) and Jayaraman (1954). Similar studies were made by La Fond (1958) for the east coast of India. It was decided to gather phytoplankton and hydrological data on a straight course west of Colombo up to a distance of 30 miles. Three stations were selected as follows:-

Station $1 \quad 6^{\circ} 53^{\prime} \mathrm{N}$ latitude $79^{\circ} 42.5 \mathrm{E}$ longitude. Within the Continental Shelf 7 miles from shore.
Station $26^{\circ} 57.5^{\prime} \mathrm{N}$ latitude $79^{\circ} 37^{\prime} \mathrm{E}$ longitude. On the Continental Shelf 13 miles from shore.
Station $3 \quad 6^{\circ} 57^{\prime} \mathrm{N}$ latitude $79^{\circ} 24^{\prime} \mathrm{E}$ longitude. Beyond the Continental Shelf 28 miles from shore.

The present paper gives a comparative account of the hydrological conditions and phytoplankton within the Continental Shelf and beyond the Continental Shelf. 54 water samples were taken for hydrological analysis and 18 surface tows for plankton. Tables 1 to 3.

MATERIALS AND METHODS

Water samples were collected by a Nansen Bottle at the surface and at depths of 15 meters and 30 meters and temperatures were read from the reversing thermometer. Turbidity was determined using a Secchi dise. Surface collections of plankton were made for 15 minutes using Kitahara's surface plankton net with an over-all length of 120 cms . and a diameter of 30 cms . The mesh was in conformity with the International Standard net No. 13 and with the Japanese standard XX 13. The boats used for the purpose were the Fisheries Corporation trawler "Gandara" for 4 trips and the smaller 50 ton trawlers "Canadian" and "North Star" for the other two trips respectively. The plankton collected were preserved in 4% formalin. Salinities were obtained by determining chlorinity by Knudsen's method and reading salinity values directly from Knudsen's table, the oxygen content by Winkler's method, the phosphate content by Ammonium Molybdate method by Robinson and Thomson and the volume of each haul by the displacement method.

Quantitative estimations were made by counting under a binocular microscope the plankton contained in 1 ml . samples. The results are shown in tables 4, 5 and 6. Although we are fully aware of the limitations of this paper it is being published as it is felt that it will be of value for future work.

Net Plankton Volume

The total net-plankton volume was highest at station 1 within the Continental Shelf and reasonably high on the Continental Shelf but poor beyond it. The plankton content was high from November to January. There was a slight decrease in February with a sudden increase in March.

[^0]table 1
Station $1 \quad 8.6^{\circ} 53^{\prime} \mathrm{N}$ Latitude, $97^{\circ} 42.5^{\prime}$ Longitude
STRAIGHT COURSE WEST OF COLOMBO

Date	Time hours	Depth Metres	Turbidity Metres	Air Temp.	Water Temp.	$\begin{aligned} & \text { Oxygen } \\ & \text { Mg at P/L } \end{aligned}$	Salinity \%	Phosphates Mg. at P/L	Net Volume of Plankton ml.	Condition of the Sea
29.11 .66	1600	0		$29.2{ }^{\circ} \mathrm{C}$	$28.6{ }^{\circ} \mathrm{C}$	492	33.30	0.025		swell blue and
"North Star"	do.	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	22		$\begin{aligned} & 28.6^{\circ} \mathrm{C} \\ & 28.5^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} .471 \\ .431 \end{array}$	$\begin{aligned} & 53.34 \\ & 33.83 \end{aligned}$	$\begin{aligned} & 0.025 \\ & 0.15 \end{aligned}$	14.0	clear water, slow breeze and slightly cloudy.
"Gandara"	1545	$\begin{gathered} 0 \\ 15 \\ 30 \end{gathered}$	23.2	$29.1{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 28.5^{\circ} \mathrm{C} \\ & 28.2^{\circ} \mathrm{C} \\ & 28.1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & .435 \\ & .434 \\ & .432 \end{aligned}$	$\begin{gathered} 33.06 \\ 33.06 \\ 33.84 \end{gathered}$	$\begin{aligned} & 0.40 \\ + & 0.50 \\ \cdot & 0.50 \end{aligned}$	15.5	Slight swell, blue and clear water, slow breeze and clear sky
15. 1.67 "Gandara"	1015	$\begin{array}{r} 0 \\ 15 \\ 30 \end{array}$	26	$28.3{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 28.0^{\circ} \mathrm{C} \\ & 27.6^{\circ} \mathrm{C} \\ & 27.4^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} .438 \\ .434 \\ .434 \end{array}$	$\begin{gathered} 33.44 \\ 33.44 \\ 33.80 \end{gathered}$	$\begin{aligned} & \hline 0.05 \\ & \cdot 0.05 \\ & \cdot 0.10 \end{aligned}$	12.8	Calm sea, blue and clear water, slight blowing and clear sky
$\begin{aligned} & \text { 1. } 2.67 \\ & \text { Gandara } " \end{aligned}$	1545	$\begin{array}{r} 0 \\ 15 \\ 30 \end{array}$	22	$28.9^{\circ} \mathrm{C}$	$\begin{aligned} & 27.9^{\circ} \mathrm{C} \\ & 27.5^{\circ} \mathrm{C} \\ & 27.5^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} .427 \\ \cdot \\ -\quad .420 \\ \hline \end{array}$	$\begin{aligned} & 33.28 \\ \cdot & 33.84 \\ \cdot & 34.48 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.25 \\ & 0.45 \end{aligned}$	10.5	Rough sea, blue water, strong breeze and clear sky
$\begin{gathered} \text { 5. } 3.67 \\ \text { "Gandara" } \end{gathered}$	1600	$\begin{array}{r} 0 \\ 15 \\ 30 \end{array}$	18	$30.0{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 27.95^{\circ} \mathrm{C} \\ & 27.9^{\circ} \mathrm{C} \\ & 27.8^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} .448 \\ .441 \\ .439 \end{array}$	$\begin{array}{r} 33.84 \\ \cdot \quad 34.16 \\ . \quad 34.23 \end{array}$	$\begin{aligned} & \quad 0.025 \\ & \cdot \\ & \cdot \\ & \hline \end{aligned}$	$\begin{array}{ll}\cdots & 17.5\end{array}$	Slight swell, blue water, slight blowing, clear sky.
$\begin{gathered} \text { 19. 4. } 67 \\ * \text { Canadian } \end{gathered}$	1600	$\begin{array}{r} 0 \\ 15 \\ 30 \end{array}$	25	$31.2{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 29.8^{\circ} \mathrm{C} \\ & 29.8^{\circ} \mathrm{C} \end{aligned}$ $29.6^{\circ} \mathrm{C}$	$\begin{array}{r} .431 \\ . \quad .419 \\ . \quad .410 \end{array}$	$\begin{array}{ll} \because & 33.99 \\ \because & 34.08 \\ \because \quad & 34.09 \end{array}$	$\begin{array}{cc} \because & 0.025 \\ \because & 0.15 \\ \therefore & 0.15 \end{array}$	$\begin{array}{ll}\cdots & 12.5\end{array}$	Light swell, blue water slight blowing and clear sky

TABLE 2
Station 2. $6^{\circ} 57.5^{\prime}$ N. Latitude $-79^{\circ} 37^{\prime}$ E. Longitude
$\left.\begin{array}{lccc}\begin{array}{c}\text { Net Volume } \\ \text { ml. }\end{array} & \\ \text { Condition of the sea }\end{array}\right]$

Date	Time hrs.	Depth Metres	Station 2. $6^{\circ} 57.5^{\prime}$ N. Latitude- $\mathbf{7 9}^{\circ} 37^{\prime}$ E. Longitude STRAIGHT COURSE WEST OF COLOMBO					
			Turbidity Metres	$\underset{\text { Tem }}{\text { Air }}$	Water Temp.	$\begin{aligned} & \text { Oxygen } \\ & \mu g . \text { at } P / L \end{aligned}$	Salinity $\%$ -	Posphates ug. at P/L
29.11 .66	0915	0			$28.6{ }^{\circ} \mathrm{C}$. 483	33.26	0.025
"North Star"		$\begin{aligned} & 15 \\ & 30 \end{aligned}$	31	$28.7^{\circ} \mathrm{C}^{\prime \prime}$	$28.6{ }^{\circ} \mathrm{C}$ 28.5	$\begin{array}{r} .466 \\ .447 \end{array}$	33.28 $\mathbf{3 4 . 0 4}$	$\begin{aligned} & 0.025 \\ & \hline \quad 0.15 \end{aligned}$
21.12 .66	0920	0			$28.2{ }^{\circ} \mathrm{C}$. 434	33.06	0.025
"Gandara"		$\begin{aligned} & 15 \\ & 30 \end{aligned}$	22	$27.8^{\circ} \mathrm{C}$	${ }^{28.2}{ }^{\circ}{ }^{\circ} \mathrm{C}$. 4331	33.43 33.80	$\begin{array}{ll} \because & 0.025 \\ \therefore & 0.15 \end{array}$
15. 1.67	0915	0			$27.6{ }^{\circ} \mathrm{C}$. 437	33.44	0.05
"Gandara"		$\begin{aligned} & 15 \\ & 30 \end{aligned}$	33	$28.4{ }^{\circ} \mathrm{C}$	$27.4{ }^{\circ} \mathrm{C}$ 27.4	$\begin{array}{ll}\text {. } & .427 \\ . & .427\end{array}$	33.72 33.72	$\begin{array}{r} \quad 0.72 \\ \times \quad 0.05 \end{array}$
1. 2.67	0945	0			$28.0{ }^{\circ} \mathrm{C}$. . 427	33.50	0.15
"Gandara "		15	30	$28.2{ }^{\circ} \mathrm{C}$	$27.4{ }^{\circ} \mathrm{C}$. 427	33.50	0.20
		30			$27.0^{\circ} \mathrm{C}$. 413	34.48	0.20
5. 3.67	0920	0			$27.4^{\circ} \mathrm{C}$. . 441	33.87	. 0.025
"Gandara"		15	26	$28.6^{\circ} \mathrm{C}$	$27.2{ }^{\circ} \mathrm{C}$. 440	33.94	. 0.05
		30			$27.1{ }^{\circ} \mathrm{C}$. 438	34.16	0.10
19.4.67	0930	0			$29.85{ }^{\circ} \mathrm{C}$. . . 423	33.67	. 0.20
"Canadian"		15	27	$30.7{ }^{\circ} \mathrm{C}$	$29.7^{\circ} \mathrm{C}$.. . 414	33.83	$\therefore \quad 0.20$
		30			$29.5{ }^{\circ} \mathrm{C}$. . 410	34.15	. 0.25

TABLE 3
Station 3. $6^{\circ} 57^{\prime}$ N. Latitude- $79^{\circ} 24^{\prime}$ E. Longitude

Net Plan		Condition of the sea
5.8		Slight swell, blue and clear water, slow breeze and slightly cloudy.
6.4		Slight swell, blue and clear water, slowbreeze and clear sky.
5.2		Calm sea, blue and clear water, slight blowing and clear sky.
5.8		Rough sea, blue water, strong breeze and clear sky.
6.8		Slight swell, blue water, slight blowing and clear sky.
4.2		Slight swell, blue water, slight blowing and clear sky

TABLE 4
 Phytoplankton Caiendar-November, 1866, to Aprll, 1967, Station I

$6^{\circ} 57.5^{\prime} \mathrm{N}$. Latitude $79^{\circ} 37^{\prime} \mathrm{E}$. Longitude

Cyanophyceae

1. Trichodesmium erythraeum Ehrenberg $\quad \ldots \quad \mathbf{P} \quad \mathbf{P} \quad \mathbf{P} \quad \mathbf{C} \quad \mathbf{C} \quad \mathbf{C}$

TABLE 5

Phytoplankton. Calendar-November, 1966, to April, 1967, Station 2
$6^{\circ} 57^{\prime}$ N. Latitude $79^{\circ} 24^{\prime}$ Longitude.

	DIATOMS	November	December	January	February	March	April
	Melosira sulcata (Ehrenberg) Kuetzing	C	C	-	F	R	R
	Thalassiosira decipiens (Grunow) Jorgenson	C	C	F	_-	R	F
3.	Coscinodiscus gigas (Ehrenberg)	F	C	C	R	-	
4.	Coscinodiscus marginatus Ehrenberg	.. -	F	F	-	R	R
5.	Planktoniella sol (Wallich) Schutt	C	C	P	-	R	-
6.	Rhizosolenia alata Brightwell	R	C	C	C	B	P
7.	Rhizosolenia imbricata Brightwell	C	P	P	-	-	R
8.	Rhizosolenia hebetata (Bailey) Gran	F	P	P	-	-	R
9.	Bacteriastrum varians Lauder	F	C	-	-	-	-
10.	Bacteriastrum hyalinum Lauder	R	C	-	-	R	R
11.	Chaetoceros indicus Subrahmanyan	F	P	F	-	-	R
12.	Chaetoceros pervianus Brightwell	C	C	-	-	-	F
13.	Chaetoceros lorenzianus Grunow	F	P	P	-	R	R
14.	Chaetoceros coarctatus Lauder	F	P	P	R	R	R
15.	Chaetoceros lascinosus Schútt	R	R	R	-	-	R
16.	Chaetocerous diversus Cleve	R	-	-	-	-	-
17.	Eucampia zoodiacus Ehrenberg	C	C	R	R	R	R
18.	Ditylum brightwellii (West) Grunow	.. -	R	R	-	-	R
19.	Biddulphia sinensis Greville	R	F	F	-	-	
20.	Biddulphia mobilensis Greville	R	R	R	-	-	R
21.	Biddulphia pulchella Gray	R	R	-	-	-	R
22.	Rhabdonia mirificum W. Smith	.. -	. .	-	-	-	R
23.	Climacosphenia elongata Bailey	.. -	R	R	-	-	R
24.	Licmorpha littoralis Misra	R	-	-	-	-	R
25.	Fragilaria oceanica Cleve	.. -	R	R	-	-	-
26.	Rhaphoneis discoides Subrahmanyan	R	R	R	-	-	R
27.	Synedra formosa Hantzsch	-	-	-	-	-	R
28.	Thallassionema nitzschioides Grunow	B	B	0	R	R	C
29.	Thallassiothrix frauenfeldii Grunow	B	B	P	C	C	R
30.	Thallassiothrix longissima Cleve	R	C	C	12	C	C
31.	Asterionella japonica Cleve	C	C	C	---	-	R
32.	Pleurosigma aestuarii Brebisson	C	F	F	...	-	R
	Trachynois aspera Ehrenberg	-	-	R	\cdots	-	-
	Bacillaria paradoxa Gymelin	R	C	R	--	-	-
	Nitzchia longissima (Brebisson) Ralfs	F	F	R	-	-	-
36.	Nitzchia seriata Cleve	F	R	-	-	-	R

Dinophyceae

1. Ceratium massiliense Gourret $\quad . \quad$.. $\quad \mathbf{R} \quad . \mathbf{R} \quad \mathbf{R} \quad \mathbf{R} \quad-\quad \mathbf{R}$
2. Ceratium trichocerous Kofoid $\quad . \quad \begin{array}{lllllllll} & & \mathbf{R} & \mathbf{R} & \mathbf{R} & \mathbf{R} & \mathbf{R} & - & \mathbf{R}\end{array}$

3. Peridineum depressum Bailey $\mathbf{R} \quad$ - \quad. \ldots R

Cyanophyceae

1. Trichodesmium erythraeum Ehrenberg $\quad \begin{array}{llllllllll} & \text {. } & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{C} & \mathbf{R} & \mathbf{C}\end{array}$

*R—Rare	$1-10$ individuals per ml.	
F-Few	$11-25$	do.
C—Common	$26-75$	do.
P—Plenty	$76-200$	do.
B—Bloom more then 200	do.	

Phytoplankton

A bloom of Thallassiothrix frauenfeldii occurred in November and December. In the same month the common diatoms were Thallassiothrix decipiens, Coscinodiscus gigas, Rhizosolenia alata, Chaetoceros lorenzianus, Eucampia zoodiacus, Thallassionema nitzschoides and Asterionella japonica. Coscinodiscus marginatus was common in January as well. There was a bloom of Rhizosolenia alata in March. Most of the diatoms which occurred in November and December were not found from January to March but re-appeared in April. .The following diatoms were found throughoub from November to April : Rhizosolenia alata, Rhizosolenia imbricata, Thallassionema nitzschioides, Thallassiothrix frauenfeldii and Nitzschia longissima. Some of the diatoms which occurred inside the continental shelf and on the continental shelf were not found beyond the shelf. However, in the case of the Dinophyceae they were more common beyond the shelf in deeper waters. Ceratium trichoceros and Ceratium depressum were common in station three while Ceratium furca was common in November, December, February and March. Ceratium fusus and Ceratium tripos were common in November in station one while Ceratium tripos was common in November and Ceratium fusus in November and December in station three.

The blue green algae Trichodesmium erythraeum was found in abundance from November to January in station one and two but few in station three.

Sea surfaee temperature

The mean monthly surface water temperature varies from $27^{\circ} \mathrm{C}$ to $29.85^{\circ} \mathrm{C}$. The temperature range for surface water is $2.98^{\circ} \mathrm{C}$. The temperatures in November and December are between $28^{\circ} \mathrm{C}$ and $28.6^{\circ} \mathrm{C}$. The temperature drops to below $28^{\circ} \mathrm{C}$ from January to March with a sudden increase to more than $29^{\circ} \mathrm{C}$ in April.

Salinity

The salinities were below $34 \%^{\circ}$ from November to January but above $34 \%^{\circ}$ from February to April. The lowest salinity recorded was $33.06 \%^{\circ}$ in December and the highest $34.48 \%{ }^{\circ}$ in February. The salinity range is $1.42 \%^{\circ}$. The same pattern prevailed at all the three stations.

Oxygen Contents

The monthly distribution of oxygen content in all the three stations from November to April does not show marked variations. The maximum oxygen content was $0.492 \mu \mathrm{~g}$. at P / L. in November and the minimum $0.398 \mu \mathrm{~g}$. at P / L. in February. The range of oxygen content is $0.094 \mu \mathrm{~g}$. at P / L.

Phosphates

The phosphate content was high in station 1 in December 0.4 to $0.5 \mu \mathrm{~g}$. at P / L. and $0.45 \mu \mathrm{~g}$. at P / L. at a depth of 30 meters in February. The maximum phosphate content was $0.072 \mu \mathrm{~g}$. at P / L. at a depth of 15 meters at station two in January. Apart from these the phosphate content was low. The phosphate content appears to increase with depth. At no stage was the phosphate content completely exhausted the lowest being $0.025 \mu \mathrm{~g}$. at P / L.

SUMMARY

The monthly variations of temperature, salinity, oxygen content and phosphates in the inshore and offshore waters off Colombo have been described and discussed.

The oxygen content was quite steady during the six months and there was not much variation.
The phosphate content increased with depth and at no stage was the phosphate content completely exhausted.

TABLE 6

Phytoplankton Calendar-November, 1966, to April, 1967, Station 3

$6^{\circ} 53^{\prime} \mathrm{N}$. Latitude

$79^{\circ} \quad 42.5^{\prime} \mathrm{E}$ Longitude.

1. Melosira sulcata (Ehrenberg) Kuetzing. .
2. Thalassiosira decipiens (Grunow) Jorgenson
3. Coscinodiscus gigas (Ehrenberg)
4. Coscinodiscus marginatus Ehrenberg

November December January Fobruary March April
5. Planktoniella sol (Wallich) Schutt

```
..
```

.	-	-	-	-	-
	$\overline{\mathrm{F}}$	F	R	-	-
R					

6. Rhizosolenia alate Brightwell
..
7. Rhizosolenia imbricata Brightwell
..
8. Rhizosolenia hebetata (Bailey) Gran
.. ..
9. Bacteriastrum varians Lauder

-	
\cdots	
\cdots	

10. Bacteriastrum hyalinum Lauder
11. Chaetoceros indicus Subrahmanyan
..
12. Chaetoceros pervianus Brightwell
13. Chaetoceros lorenzianus Grunow .
14. Chaetoceros coarctatus Lauder .
15. Chaetoceros lascinosus Schutt
.
. $\mathrm{F} \quad \mathrm{F}$

| . | R | R |
| :---: | :---: | :---: |$\quad R$

.. -
.. C
$\begin{array}{ll}\text {. } & R \\ \text {. } & R\end{array}$
.
.. - -
$\cdots \quad-\quad-$
.. R
.. -
..
16. Chaetocerous diversus Cleve
..
.
17. Eucampia zoodiacus Ehrenberg .
18. Ditylum brightwellii (West) Grunow

\cdots	C	C	P

.-
-
-
-

- \qquad
-

C
P
R
-
$\overline{-}$
$\overline{\mathrm{C}}$
19. Biddulphia sinensis Greville
20. Biddulphia mobilensis Greville
..
$\begin{array}{llll}\ldots & \text { C } & \text { C } & \text { C } \\ \ldots & \text { F } & \text { F } & \text { F }\end{array}$
.. -
.. -
-
.. $R \quad R$
-

.\cdot
.

21. Biddulphia pulchella Gray
22. Rhabdonia mirificum W. Smith
..
.. -

-

.. F
23. Climacosphenia elongata Bailey
..
24. Liemorpha littoralis Misra .
25. Fragilaria oceanica Cleve
26. Rhaphoneis discoides Subrahmanyan
$\cdots \quad-$
$\begin{array}{ll}. & \text {. } \\ \cdots & \end{array}$
27. Synedra formosa Hantzsch
. - - - - - -
28. Thallassionema nitzschioides Grunow

| . | - | - | - | - |
| :--- | :--- | :--- | :--- | :--- | :--- |

29. Thallassiothrix frauenfeldii Grunow

.	R	R	-	-	-

30. Thallassiothrix longissima Cleve
$\begin{array}{llll}. & - & - & -\end{array}$
31. Asterionella japonica Cleve
.. $\quad \mathrm{C}$ -

-

32. Pleurosigma aestuarii Brebisson
33. Trachynois aspera Ehrenberg
.
$\cdots \quad \mathrm{R}$
C
p
F
$\cdots \quad-\quad-\quad-$
-
--
34. Bacillaria paradoxa Gymelin
35. Nitzchia longissima (Brebisson) Ralfs
$\begin{array}{lll}. & - & - \\ R & -\end{array}$
36. Nitzchia seriata Cleve .
$\begin{array}{lll}. & \mathrm{R} & \mathrm{R} \\ \cdots & \mathrm{P} & \mathrm{P}\end{array}$
R
P

Dinophyceae

1. Ceratium massiliense Gourret

.	\cdots	-	-	-	\mathbf{R}	\mathbf{R}	-
\cdots	\cdots	\mathbf{R}	R	-	R	\mathbf{R}	\mathbf{R}
\cdots	\cdots	C	C	\mathbf{F}	\mathbf{R}	\mathbf{R}	\mathbf{R}
\cdots	\cdots	C	F	\mathbf{F}	\mathbf{R}	\mathbf{R}	\mathbf{R}
\cdots	\cdots	R	C	\mathbf{R}	C	\mathbf{C}	\mathbf{R}
\cdots	\cdots	C	C	\mathbf{R}	\mathbf{R}	\mathbf{R}	\mathbf{R}

Cyanophyceae

$\begin{array}{llllllllll}\text { 1. } & \text { Trichodesmium erythraeum Ehrenberg } & \ldots & F & F & \mathbf{F} & \boldsymbol{F} & \mathbf{R} & \mathbf{R}\end{array}$

$* \mathrm{R}$	-	Rare	1	-	10
individuals per ml.					
F	-	Few 11	-	25	do.
C	-	Common 26	-	75	do.
P	-	Plenty 76	-	200	do.
B	-	Bloom more than	200	do.	

2. Ceratium trichocerous Kofoid R R \quad R
3. Ceratium fusus Ehrenberg $\quad . \quad \ldots \quad$ C \quad C \quad.
4. Ceratium tripos Nitzsch $\quad . \quad$.. \quad C \quad F \quad F \quad R \quad R
$\begin{array}{llllllllll}\text { 5. } & \text { Ceratium furca Ehrenberg } & \ldots & \ldots & \text { R } & \text { C } & \text { R } & \text { C } & \text { C } & \text { R } \\ \text { 6. } & \text { Peridineum depressum Bailey } & \ldots & \ldots & \text { C } & \text { C } & \text { R } & \text { R } & \text { R } & \boldsymbol{R}\end{array}$
$F \quad F \quad F$

Phytoplankton was concentrated within the Continental Shelf and on the Continental Shelf but gradually diminished beyond the shelf. The Dinophyceae was found in abundance beyond the shelf. The volume of plankton is high from November to January corresponding to the maximum catch of fish from November to April. It diminishes slightly in February and reaches a peak in March and falls again in April.

ACKNOWLEDGMENTS

We wish to express our sincere thanks to Mr. Rajan Kadirgamar, Rear Admiral of the Royal Ceylon Navy and Director Maritime of the Ceylon Fisheries Corporation, for granting us facilities to carry out the work and providing naval staff to assist in carrying out the programme in Oceanngraphy.

REFERENCES

Chacko, P. I. (1942) Food and feeding habits of the fishes of the Gulf of Mannar Proc. Ind. Acad, Sec. 29, Sci.B, 83-97
(1950) Marine plankton from waters around the Krusadai Island ibid. 31, Sec. B. 162-74.

Das, P. K. (1954) Ind. Jour. Met. and Geophy., 5.
Durairatnam, M. (1963) Studies on the Seasonal Cycle of Sea Surface Temperatures, Salinities and Phytoplankton in Puttalam Lagoon, Dutch Bay and Portugal Bay along the West Coast of Ceylon" Bull. Fish. Res. Stn., Ceylon. Vol. 16, No. 1, pp. 9-24, June, 1963.
Fleming, R. H. (1948) " Physical characteristics of the inshore environment" J. mar. Res. 7, 483-89.
Gonzalves, E. A. (1947) Variation in the seasonal composition of phytoplankton of Bombay Harbour Current Science, 16, 304-05.
Jeyaraman, R. (1951) " Observations on the chemistry of the waters of the Bay of Bengal off Madras City during 1948-49 $\%$. Proc. Ind. Acad. Sci. 38, 92-99.
(1954) Seasonal variations in salinity, dissolved oxygen and nutrient salts in the inshore water of the Gulf of Mannar and Palk Bay near Mandapam (S. India). Indian J. Fish., 1, 345-64.
Malpas, A. H. (1930) Preliminary account of the results of drift bottle experiments in the Gulf of Mannar. Ceylon J. Sci., Sect. C. 4. 1-95
Menon, M. A. S. (1945) Observations on the seasonal distribution of the plankton of the Trivandram Coast Proc. Ind. Acad. Sec., 22, Sec, B, 31-62.
Prasad, R. R., Bapat, S. V. and Tampi, P.R. S. (1952) Observations on the seasonal distribution of the plankton at six inshore stations in the Gulf of Mannar J. Zool. Sci. India, 4, 141-151.
Prasad, R. R. (1954) The characteristics of marine plankton at an inshore station in the Gulf of Mannar and Mandapam. Indian Fish. Vol. 1, Nos. 1 \& 2. p. 1-35.
(1956) Further studies on the plankton of the inshore waters off Mandapam ibid. Vol. 3 No. 1. pp. 1-41.

Sewele, R. B. S. (1925) Geographical and Oceanographical Research in Indian waters Mem. Asia Soc. Bengal, 1925-32, 9, 1-424.

[^0]: * Fisheries Research Station, P. O. Box 53I, Colombo, Ceylon. 11-JJ 9445 (12/69)

