Bull. Fish. Res. Stn., Sri Lanka, Vol. 28, pp. 1-26, 1978.

Estimating the Population Density of Prawns by the use of Catch per Effort Data from Prawn Trawlers at Chilaw

 \sim

M. S. M. SIDDEEK,*

Introduction

The penaeid prawns of Sri Lanka from estuaries and sea are an important commercial fishery resource. This resource has been exploited over the last century or more by local fishermen using indigenous fishing gear from locally sail-driven or oar-driven fishing crafst. In more recent times (i. e. within the last 20 years) the Fisheries Research Division of the Department of F[:] heries undertook surveys of the seas and lagoons of Sri Lanka with a view to ascertain whether any unexploited resources of prawns existed. Although new resources were not available in the lagoons and estuarine waters, untapped resources were located off the Old Railway Pier, Mannar in the north of the Island, a new fishery ground between Kachchitivu and Rameswaram temple, and a narrow stretch of prawn ground from Pesalai at depths of 3-5 fathom extending along the Palk Strait up to Dhanushkodi Point. A new resource was also located south-east of the Mullaithivu Light House at depths of 8–12 fathom stretching southwards to a point west of Pullimoddi. The above findings are reported in the Bulletins of the Fisheries Research Station (De Bruin, 1965, 1970, 1971).

These publications deal with the species composition, biology, distribution and abundance in the lagoons and inshore waters of Sri Lanka.

Although the total production of penaeid prawns from the lagoons and inshore waters of Sri Lanka have been estimated to be in the region of 1,000–1,500 tons per annum, (De Bruin, unpublished) these figures were based mainly on eye estimates of catches made over a long period of time from the main productive centres of the Island. The prawn fisheries at Negombo and Chilaw are two of the most productive centres and it seemed advisable therefore to make a record of the catches in this region in order to observe, firstly, the productivity of these centres and secondly the effect of the intensity of fishing on the population density of the penaeid prawns. This paper outlines the result of work carried out at Chilaw during the period 13.1.77 to 1.3.77, and gives an estimate of the population density of the different species of prawns in the fishing grounds off Chilaw. This particular period was from earlier experience found to be the time at which the population density is lowest.

Prawn Trawling at Chilaw

Prawn trawling at Chilaw has been in existence for the last few hundred of years. Before the introduction of $3\frac{1}{2}$ ton mechanised boats, outrigger canoes with sail were engaged in prawn trawling and their operations were confined to the banks lying between Karukapone and Mahamade. The original net used to capture prawns consisted of a square mouth 11 ft. \times 11 ft. and tapering as a cone for a length of $3\frac{1}{2}$ ft. The original net consisted of cotton fibre. The mesh size was uniform and measured 5/8 inches when stretched.

Fishing for prawns in this region, off the 28-foot mechanised boat, powered by inboat diesel engines, commenced around 1962. The operations of mechanised boats were hampered by frequent sand-bar formation at the mouth of the Chilaw lagoon, which prevented easy access of the boats to

Fisheries Research Station, P. O. Box 531, Colombo, Sri Lanka.

the traditional fishing ground, and also the consumption of fuel during trawling operations tended to be a limiting factor. However, a continued effort with the mecahnised boats showed that it was more lucrative than operating from the traditional craft, and continued trawling was assured due to its independence of vagaries in the wind and season. The catch also increased considerably as more ground could be trawled using the mechanised powered craft. Trawling takes place on the bank between Karukapone and Mattakkotuwa, measuring 12 miles by length and 1 mile by breadth, leaving some patches in Karukapone and Ambakanthawila, where submerged rocks are found at the bottom (Figure 1).

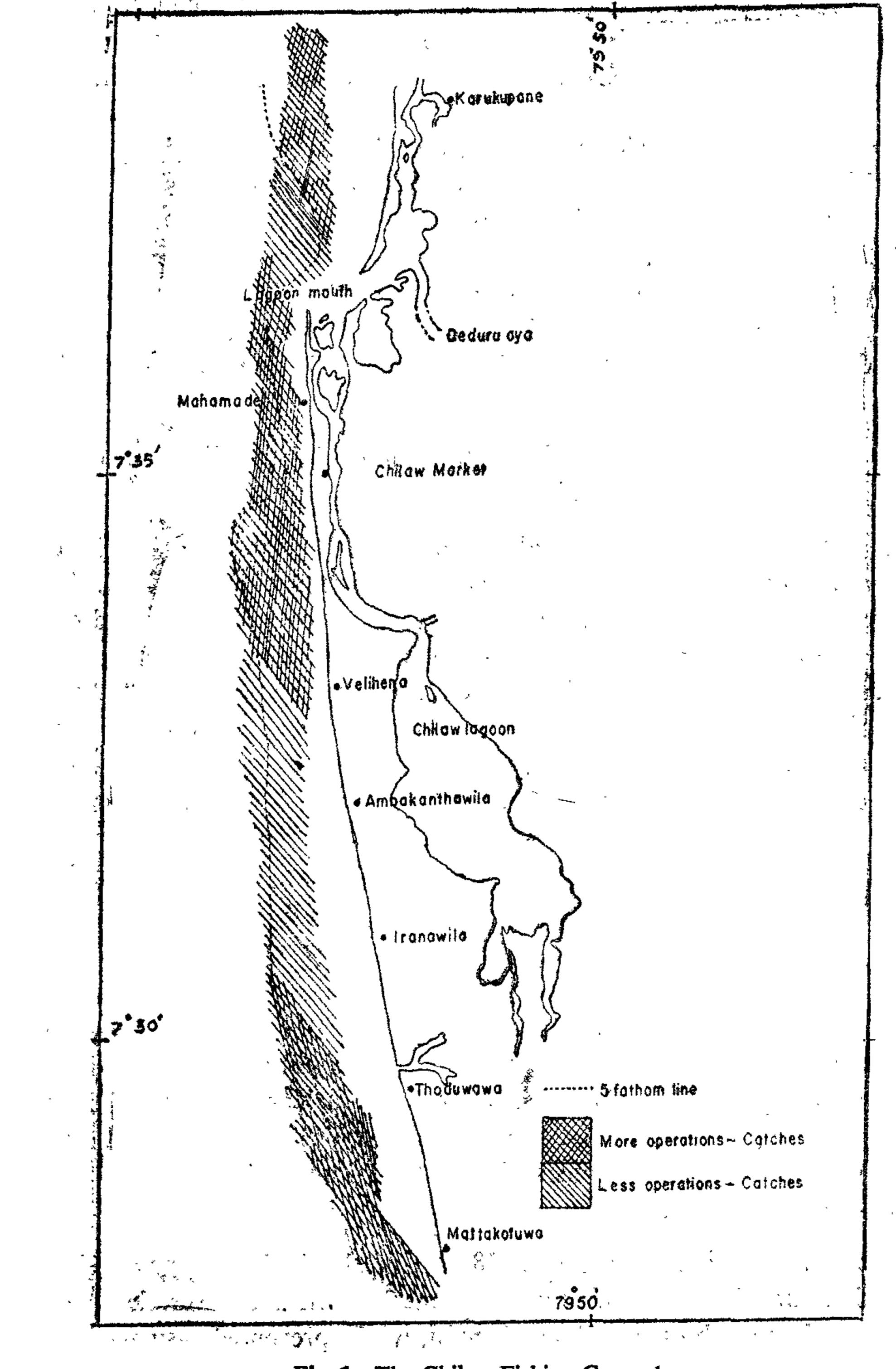


Fig. 1—The Chilaw Fishing Grounds.

The bottom of the trawling grounds consist of mud, mud and coarse sand, mud and fine sand and fine mud. It was observed that the biggest catches were made on grounds consisting of very fine mud.

The trawl net used by the mechanised boat was of modified design. Its mouth was widened, and the net narrowed down from mouth to cod end. Trawling starts just before sun-rise, and the trawlers return to Chilaw market at any time between 10.00 a.m. and 3.00 p.m. It was observed that a trawler would do an average of four trawls, each operation lasting an average period of 90 minutes and between two consecutive hauls there was a delay of an average period of 12 minutes.

The catch is brought ashore at the end of operations and sorted out into the following⁶ categories :---

- (a) The tiny prawn (Metapenaeus dobsoni, Parapeneopsis stylifera, Parapeneopsis coromandelica, Parapeneopsis cornuta, Metapenaeus monoceros, Parapeneopsis uncta, Metapenaeus affinis, Metapenaeus ensis, Caridian species, Trachypeneus species, Metapenaeopsis hilarulus, Metapenaeus burkenroadi, and Smaller sizes of Penaeus indicus and Penaeus semisulcatus, etc.)
- (b) The medium and larger sized prawns (Penaeus indicus, Penaeus semisulcatus, Penaeus monodon)
- (c) The fish.—The tiny prawns and the fish are sold in small baskets by auction at the market. A basketful of tiny prawns weighed roughly 12 pounds. Medium and large prawns are graded into three, according to their sizes and are sold to businessmen.

During the study period, a basketful of tiny prawns fetched an average price of rupees twenty-five and among the medium and large prawns the first grade (1-24 head on pieces per pound) fetched rupees twenty seven per pound, second grade (25-34 head on, pieces per pound) fetched rupees twelve per pound and the third grade (35-55 head on, pieces per pound) fetched rupees six per pound.

Methods and Material

(a) Record of Landing.—Each trawler was given a number in accordance with its landing time A systematic random sample of numbers was drawn daily, and the fishermen in the selected numbered trawler was interviewed. The weight of the catch from each of the trawlers was recorded in detail such as the weight of medium and large prawns, the weight of tiny prawns and the weight of fish. The number of prawns in a pound of large and medium sized of prawns was counted, and the average weight of each large and medium prawn was estimated. The weight of medium and large prawns from a trawler was estimated by counting the number of pieces of large prawns and medium prawns in its catch, knowing the average weight of each large and medium prawn. The weight of tiny prawns landed by a trawler was estimated from the number of small baskets of tiny prawns removed from the' trawler having estimated the average weight of a small basketful of tiny prawns. Exact weighing of prawns was not possible due to lack of co-operation from the fishermen.

The horse-power of the engines was found to be in the range of 28-32, and the average trawling speed was 1.2 knots. Dimensions of the trawl nets and the manner in which they were constructed were similar. Upper and lower lobe of the net when stretched measured 37 ft. to 42 ft. The net

narrowed down to 3ft.—4ft. at the cod-end. The nets were made of nylon 6.6 twine, with the cod-end made of kuralon. The stretched mesh sizes of the nets at different times of the study period are given below :—

Date	Mouth	Belly	Cod-end
13.1.77 – 31.1.77	22 mm(3 ply)	17 mm (3 ply)	10 mm (9 ply)
1.2.77 – 1.3.77	30 mm(6 ply)	14 mm (3 ply)	10 mm (9 ply)

The mesh sizes of the trawls varied during the periods 13.1.77–31.1.77 and 1.2.77–1.3.77. This was due to the fact that the fishermen believed that the larger size meshed nets used in the second period were more effective in capturing the fish that were present on the bank during this period as the prawn potential on the ground had now decreased considerably.

Since there was very little variation in the sizes of the mechanised boats horse-power of the engines, size of the nets used in the operations as well as speed and duration of tow it can be safely assumed that the fishing units as indicative of fishing intensity could be regarded for the purpose of statistical analysis as homogeneous.

If the statistical analysis was made on the observed catches of mixed prawns (i.e. mixed sizes) the coefficient of variation was high. It was observed that this high variability was due to irregularity in the presence of large size prawn in different boats under consideration. However if the catches of the tiny prawns were compared there appeared to be very little variation between boats. Hence the daily total catch of tiny prawns and medium and large prawns were analysed independently.

(b) Fishing Effort.—Particulars such as trawling area, number of hauls, time of fishing, etc.,

were recorded from the sampled crafts. Effective fishing time was computed for each trawler having deducted the steaming and hauling times. Coefficient of variation values of the sample efforts were observed to be small Table (1) shows this. The daily total effort was computed from the sample values.

Fishing success Estimates (De-Lury method).—The average catch per unit effort is compared with the accumulated catch. For this purpose the catch per unit effort is plotted against the accumulated catch. A downward trend in catch per unit effort suggests that the population is being reduced as a result of fishing. The extrapolation of the trend line for the catch per unit effort to the accumulated catch scale provides an estimate of the number of prawns, present on the grounds, at the time the downward trend began.

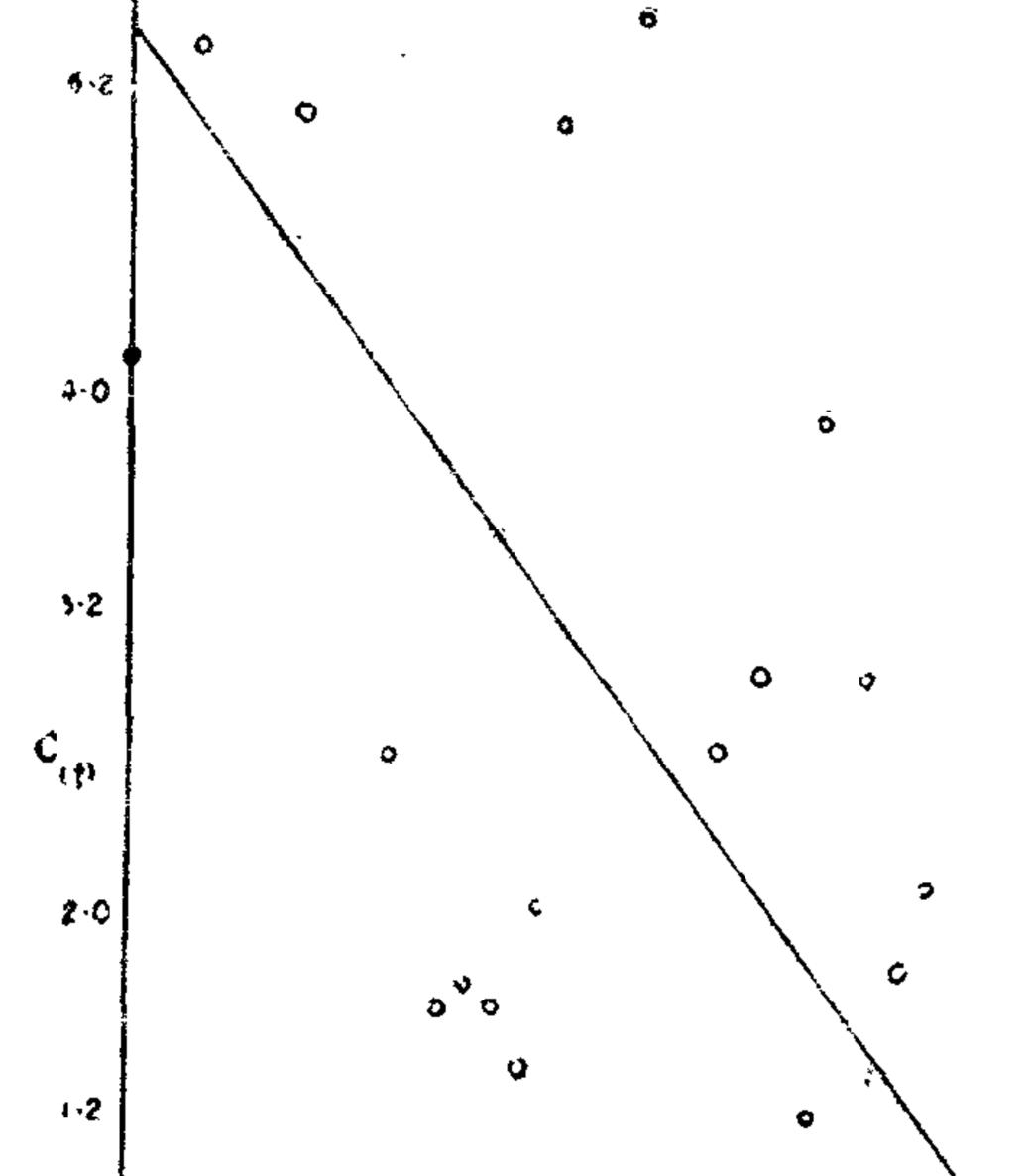
Examination of the previous years' catch records suggested that an estimate of population size might be obtained, since the catch per unit effort values were declining. The most promising period in the year was between January 13 and March 1.

Records covering fishing from January 13 to March 1 are given in Table (2), for *M. dobsoni P. stylifera* and *P. coromandelica* (combined), *P. cornuta*, *P. monodon*, *P. semisulcatus*, *P. indicus P. uncta*, *M. monoceros*, respectively, include total daily catch, total daily effort, daily catch per effort, $C_{(1)}$, and cumulative catch $A_{(1)}$ found by accumulating the daily values of total catch.

Daily values of catch per effort are plotted against cumulative catch for each species. A test of linearity was made. To do this the 'F' test was used (Dixon and Massey 1957) and the average catch per one hour effort values were grouped for arbitrary 2,000 pound, 500 pound, 25 pound, 25

pound, 200 pound, 500 pound, 100 pound groupings of accumulated catch for M. dobsoni, P. stylifera and P. coromandelica, P cornuta, P. monodon, P. semisulcatus, P. indicus, M. monoceros, P. uncta respectively. The values obtained are given in Table 3.

M. dobsoni.—From Table (3),


1.24000 F = ----- = 2.181, with $V_1 = 9$, $V_2 = 26$ As the F value

 $\frac{1}{0.56842} = 2.101, \text{ with } v_1 = 2, v_2 = 20 \text{ Hs the } value = 0.56842$

is found to be less than 2.26, it is not significant at 5% level. Hence the relationship could be given by a linear equation. The linear equation obtained by the least square method is—

$$C_{(t)} = 5.439612 - 0.000257 A_{(t)}$$

Initial population of *M. dobsoni* A_{(o)} = $\frac{KA_{(o)}}{K} = \frac{5.439612}{-----} = 21,166$ pounds
K_{(c)} 0.000257

$$K = Catchability = 0.000257.$$

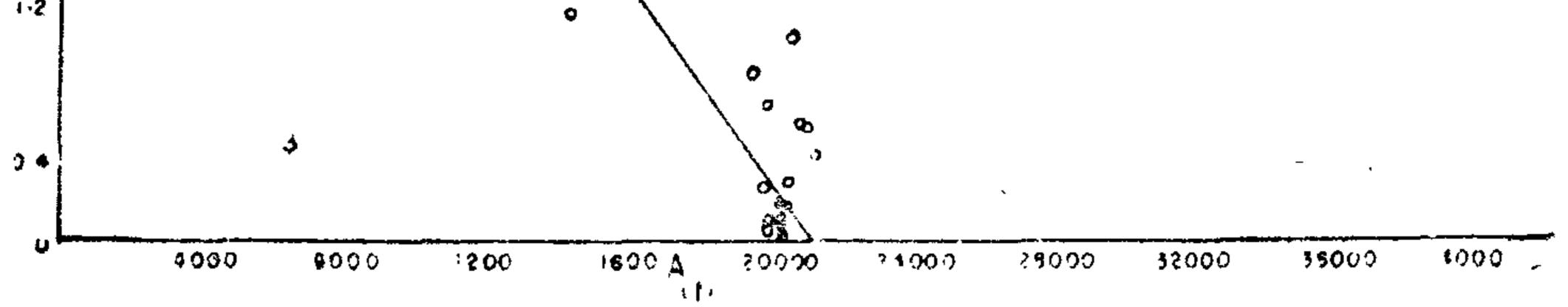


Fig. 2.—Relationship of catch per effort C(t), to accumulated catch, A(t), of Metapenaeus dobsonic for the period January 13th to March 1st, 1977 (N=37 days).

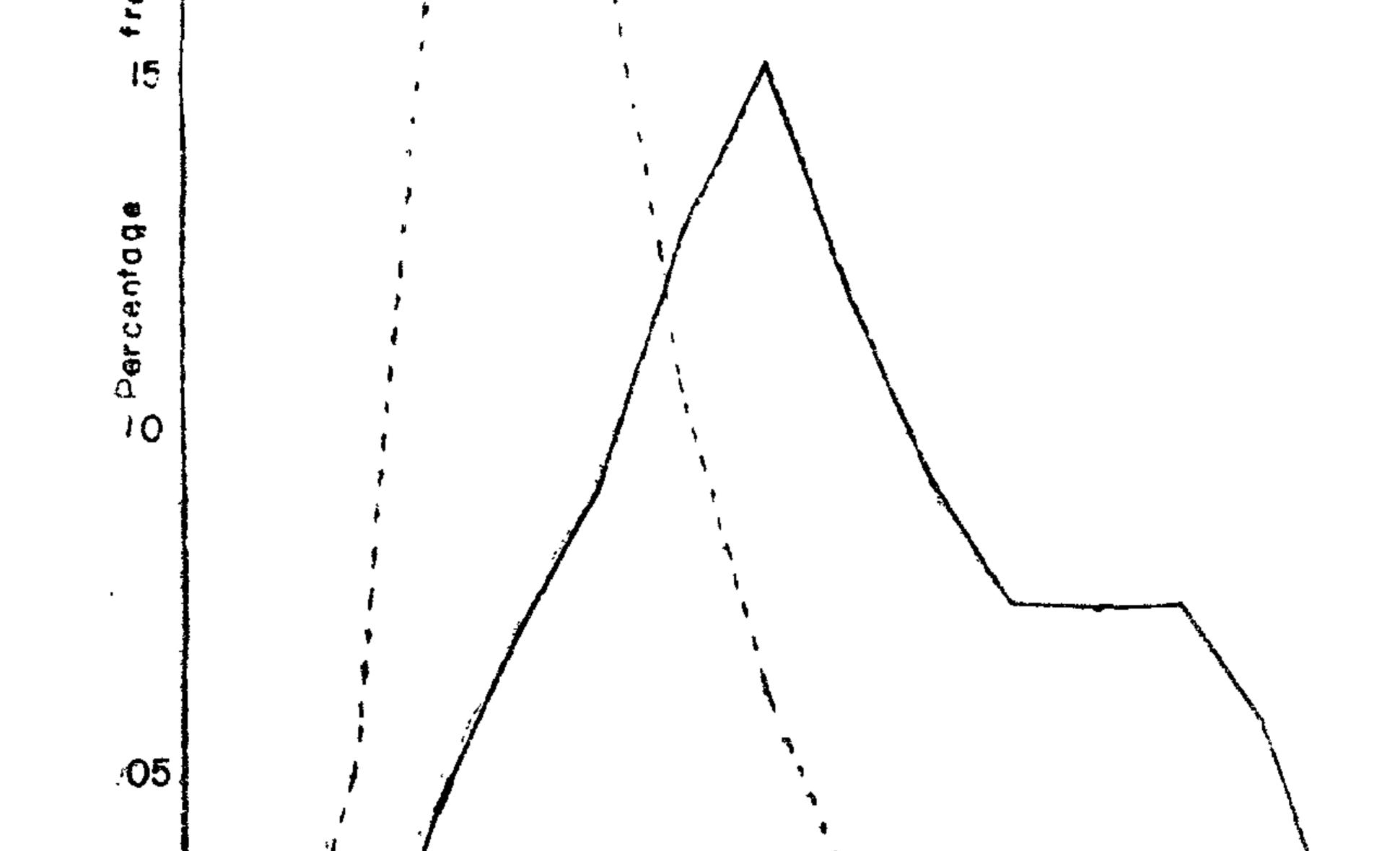
The daily total catches on 4th, 5th and 8th of February were found to be much higher than those made on the other days between 13th January to 1st March and were probably due to immigration of larger sizes of M. dobsoni (8.0-10.0 cm. total length) from other grounds or from areas of the same ground which are not accessible to the trawlers. These were completely fished in four days with the remainder probably migrating to the other grounds or dying off. The extraordinarily high catches made on the 4th, 5th and 8th of February have been excluded in the calculations designed to determine the population size.

25

20

O

C


6

- 15·01·77·05·02·77 N=967

06 02 77 - 01 03 77 N= 1073

>

.

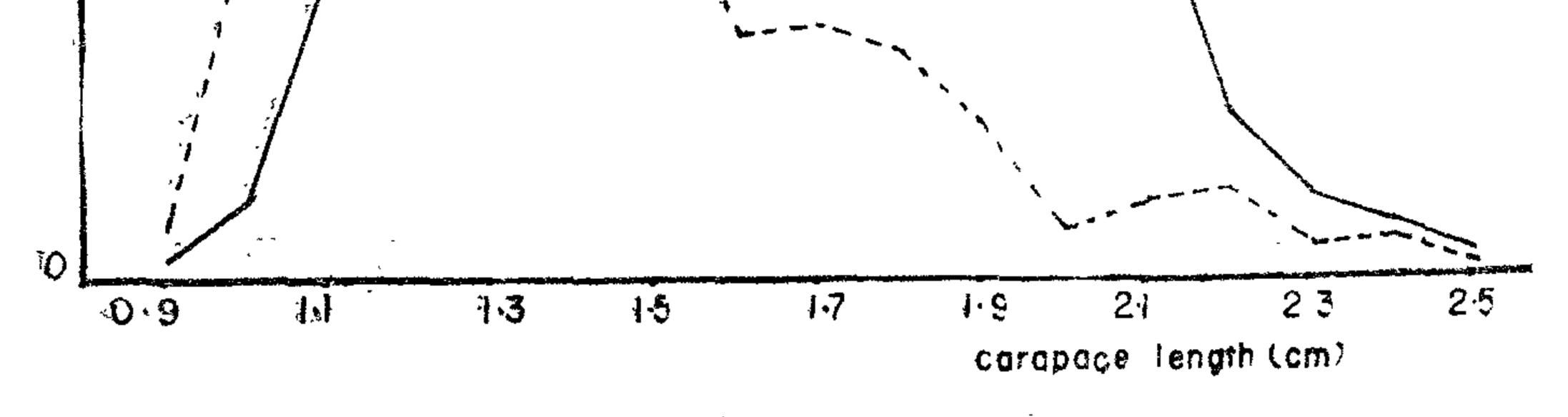


Fig. 3.—Size frequency distribution of Metapenaeus dobsoni landed during January 13th to March 1st, 1977.

The length frequency graph, of *M. dobsoni is* shown in Fig. 3. There is a reduction in larger sizes (Carapace length > 1.4 cm.) with a steep increase in medium sizes (carapace length 1.0–1.3 cm) in February. This suggest that due to heavy fishing, larger sizes of prawns are more vulnerable to the trawl net with a particular mesh size and were being removed in larger quantities from the fishing ground and there was no substantial amount of immigrant prawns other than those caught on 4th, 5th and 8th of February. There also does not seem to be new recruitment to the population from the estuarine waters.

7

P. stylifera and P. coromandelica.—These two species were considered together, Table (2), as we encountered some difficulties in separating out those P. stylifera whose telsons were broken from P. coromandelica.

0.10550
From Table (3),
$$F = \frac{0.10550}{0.12569}$$
 with $V_1 = 10$, $V_2 = 29$.

As the F value is found to be less than 2.18, it is not significant at 5% level. Hence the relationship is linear. The equation obtained by the least square method is -

$C_{(t)}$ 0.861708-0.000120 A_(t) Initial population A_(o), of *P. stylifera* and *P. coromandelica* could be estimated ----KA_(o) 0.861708

 $A_{(0)} = ---- = 7181$ pounds K = Catchability = 0.000120

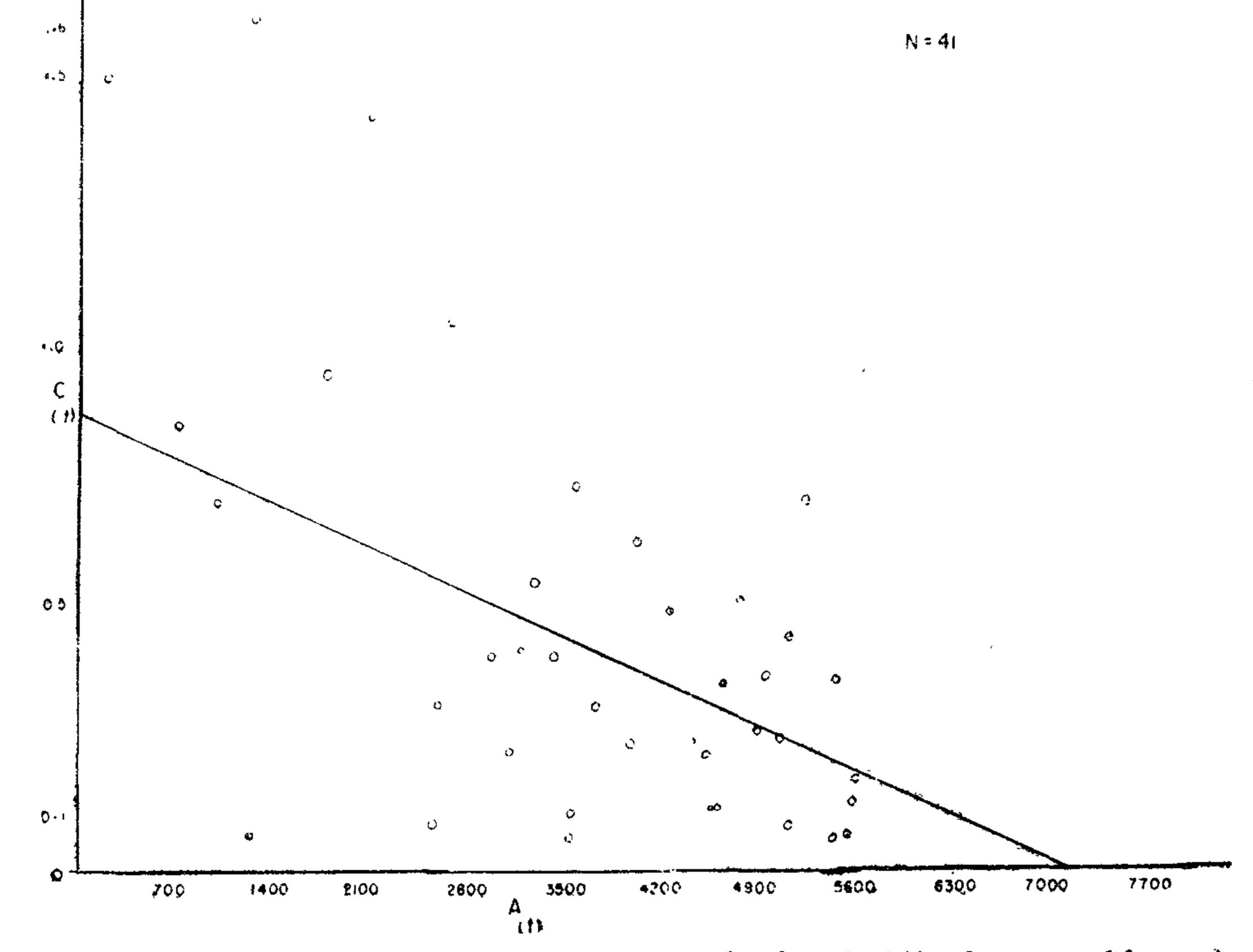
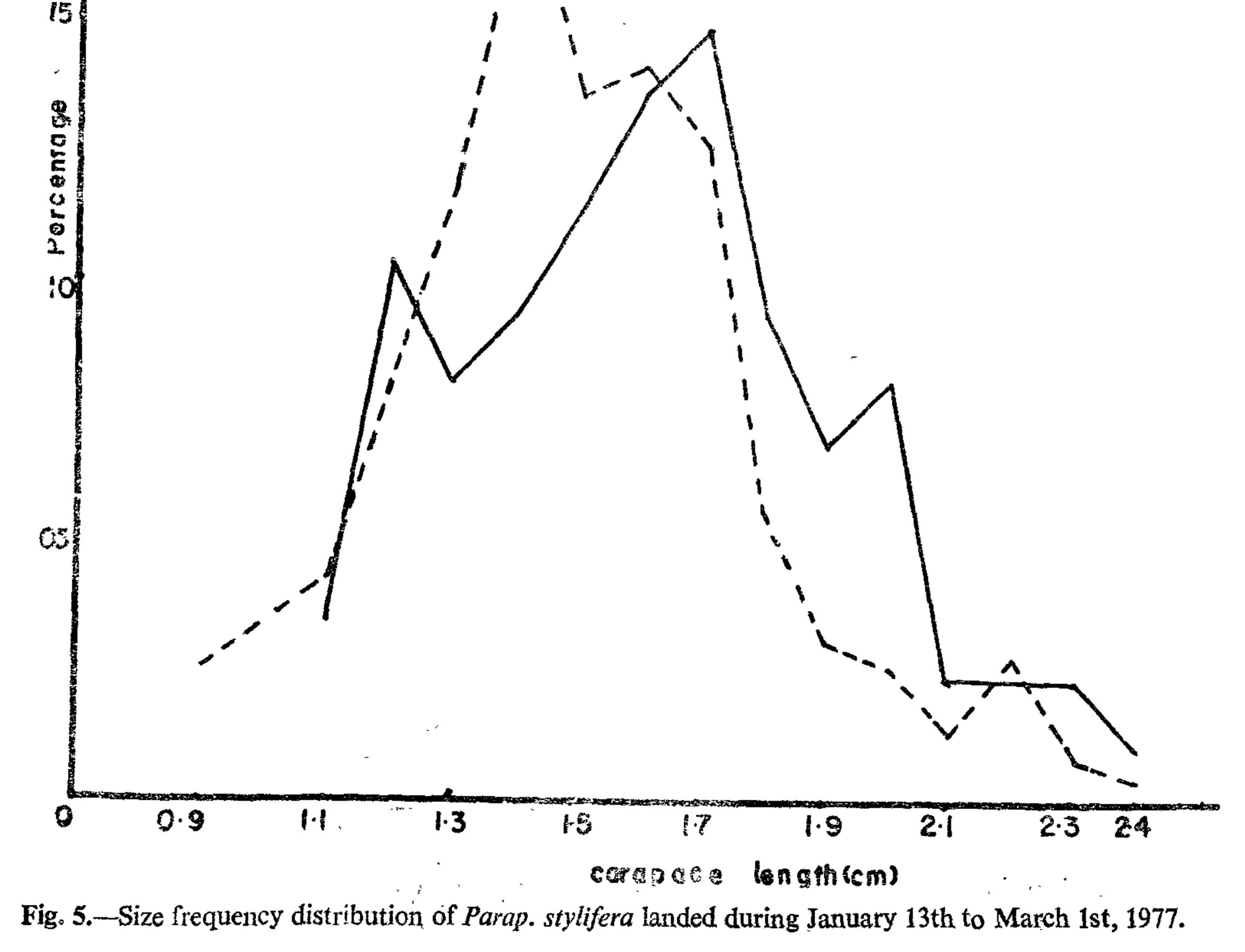
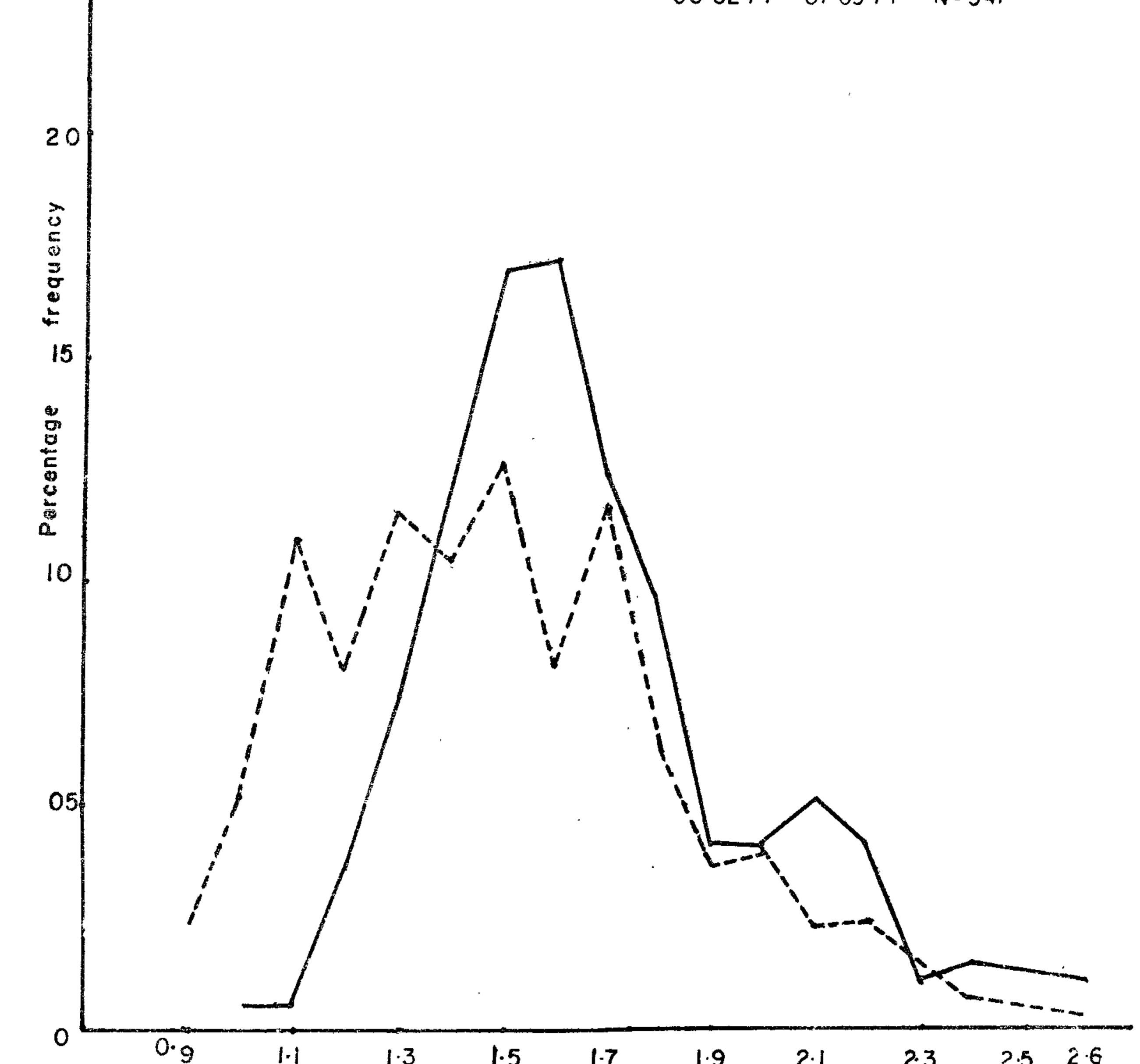


Fig. 4.—Relationship of catch per effort C(t), to accumulated catch, A(t), of Parap. stylifera and Parap. coromandelica for the period January 13th to March 1st 1977. (N=41 days)

The length frequency curves of *P. stylifera* and *P. coromandelica* show reduction in the percentage of larger sizes of prawn with a comparative increase in medium sizes of prawn in February, for the same reason mentioned under *M. dobsoni*. In the case of *P. coromandelica* percentage frequencies of the sizes with Carapace length < 1.3 cm were noticeably higher in February than in January, which may suggest that there was substantial amount of recruitment.



50


S

requen

8

Although it is not correct to assume that the catch per effort is proportional to the stock present under those conditions, author assumed it to be so for the reason that *P. stylifera* and *P. coromandelica* were treated the same when recording the catch, where the percentage of *P. coromandelica* in the daily total catch was observed to be small (<13 per cent).

'9 |-| |-3 |-5 |-7 |-9 2-| 2-3 2-5 2-6 carapa**ce lenath (cm)**

Fig. 6.—Size frequency distribution of Parap. coromandelica landed during January 13th to March 1st, 1977.

P. cornuta.—Data taken between 13th January and 8th February were considered, (Table 2). After this period the catch per effort was increasing or fluctuating. There was no record of catch on the 4th and 5th of February. This was because of the small samples taken on these days, when the

catches were very high, and dominated by immigrant M. dobsoni. On each of these dates 6 pounds was added to the accumulated catch, since this was the average quantity of daily catch landed immediately before these dates.

0 120

N = 21

10

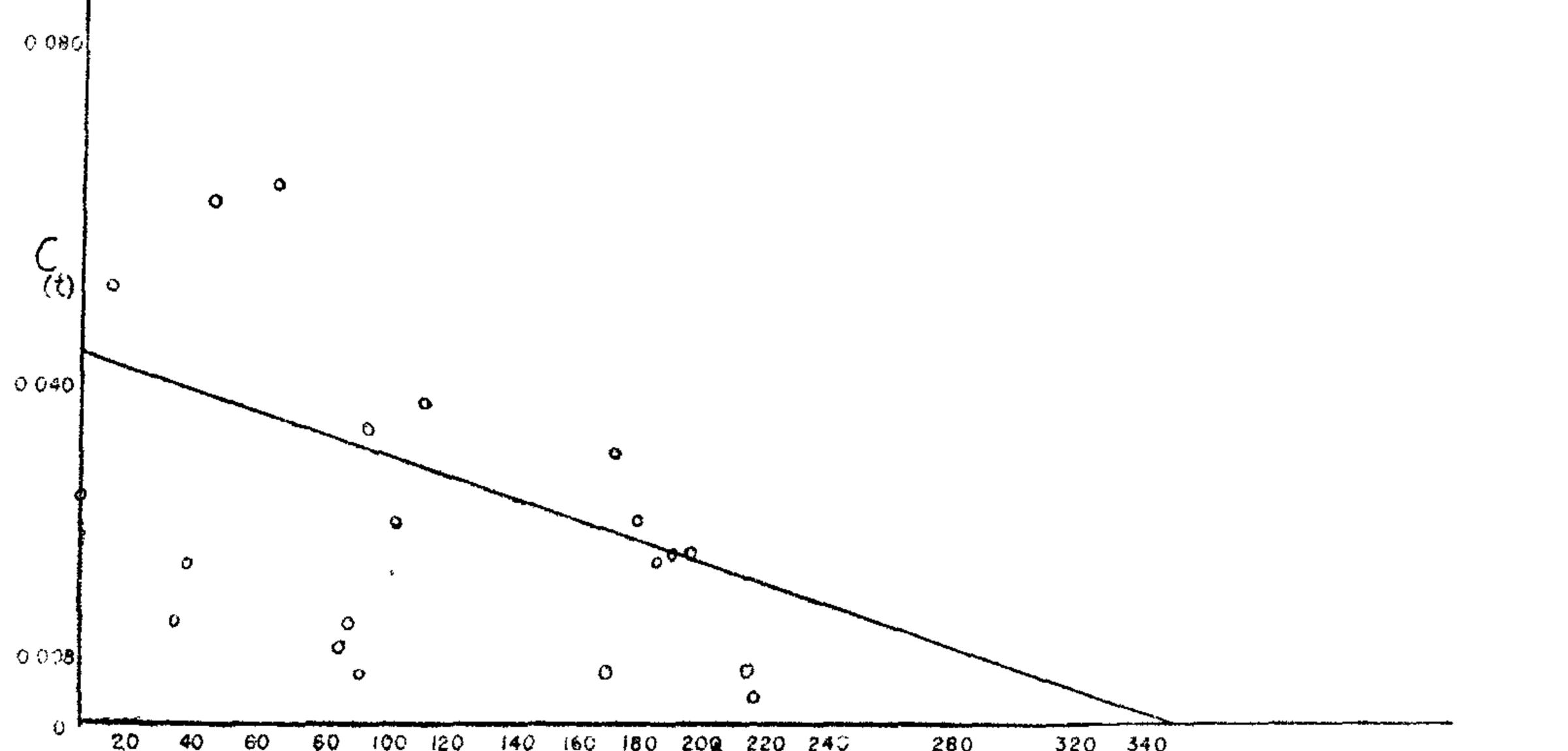


Fig. 7.—Relationship of catch per effort C(t), to accumulated catch, A(t), of Parap. cornuta for the period January 13th to February 8th, 1977. (N=21days).

From Table 3, F =
$$\frac{0.00112}{0.00078}$$
 = 1.436, V₁ = 6, V₂ = 13.

Since the value of F is less than 2.92, it is not significant at 5% level. As such the relationship is linear. The equation obtained by least square method is —

 $C_{(t)} = 0.044281 - 0.000127 A_{(t)}$

Initial population A $_{(0)}$ of P. cornuta could be calculated

$$A_{(0)} = \frac{KA_{(0)}}{K} = \frac{0.044281}{0.000127}$$

K = Catchability = 0.000127.

Figure (8) shows the length frequency polygon of *P. cornuta*. The graph is uneven because of the small number of measurements taken, hence it is not a true representation of the population. However a study of the length group frequency graphs indicates the reduction of larger sizes of prawn

(carapace length > 1.3 cm.) in the second half of the period (17.12.77-1.3.77) with substantial increases in medium sizes (carapace length 1.1-1.2 cm) and small sizes (Carapace length < 1.0 cm). The reduction of larger sizes was due to intense fishing and possible emigration of left over population from the ground, and the increase in smaller sizes at the second period was due to heavy recruitment. This contributed to the fluctuation of the daily total catch after February 8th.

11

Other Species of Prawns

For each of P. monodon, P. semisulcatus, P. indicus, M. monoceros and P. uncta a linear relationship could not be obtained between catch per effort and accumulated catch, since either the catch rate

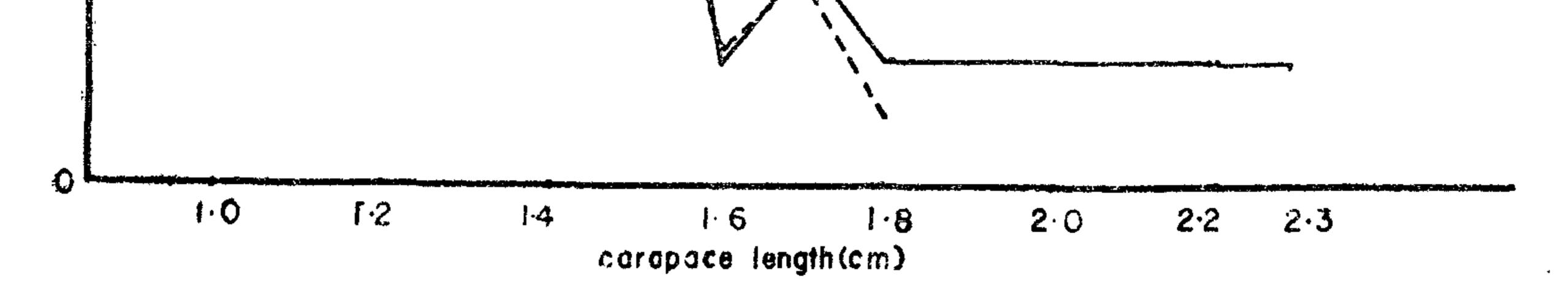
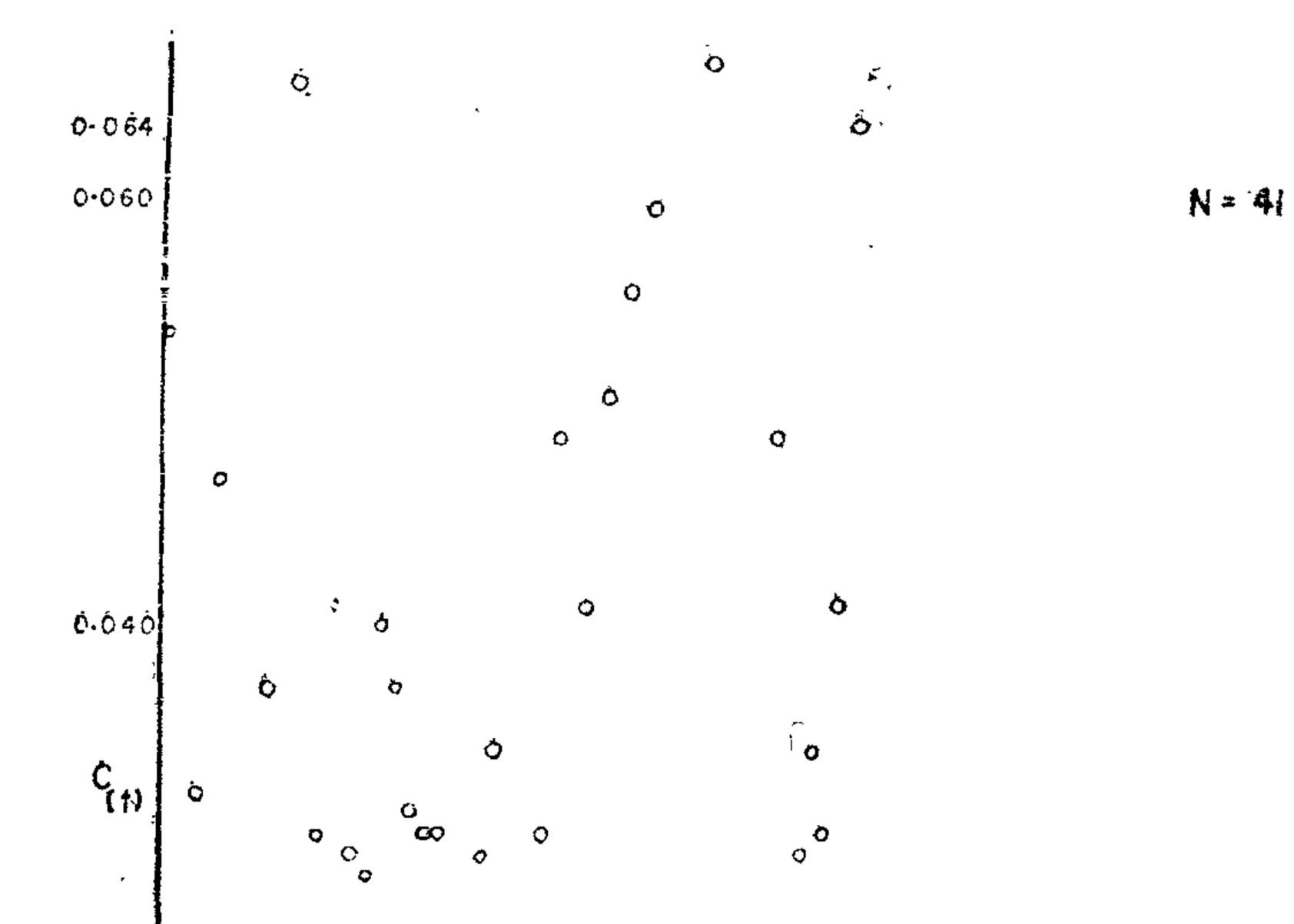
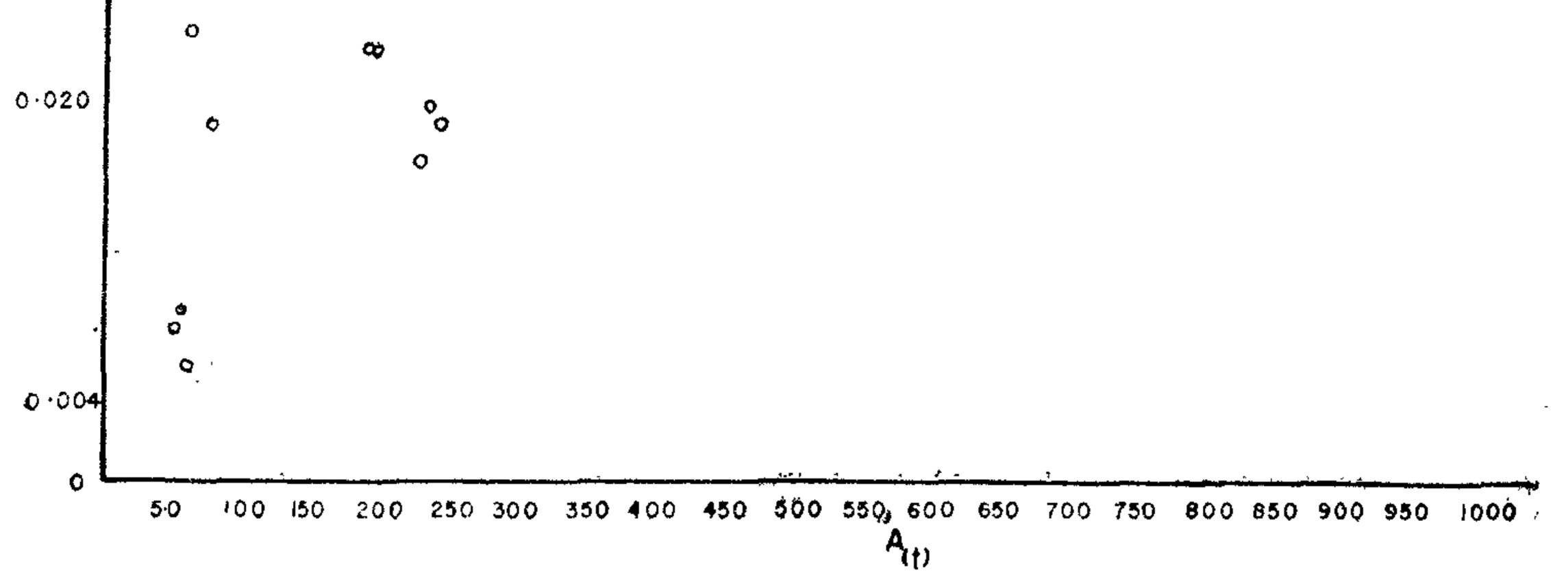



Fig. 8.—Size frequency distribution of Parap. cornuta landed during January 13th to March 1st, 1977.

-

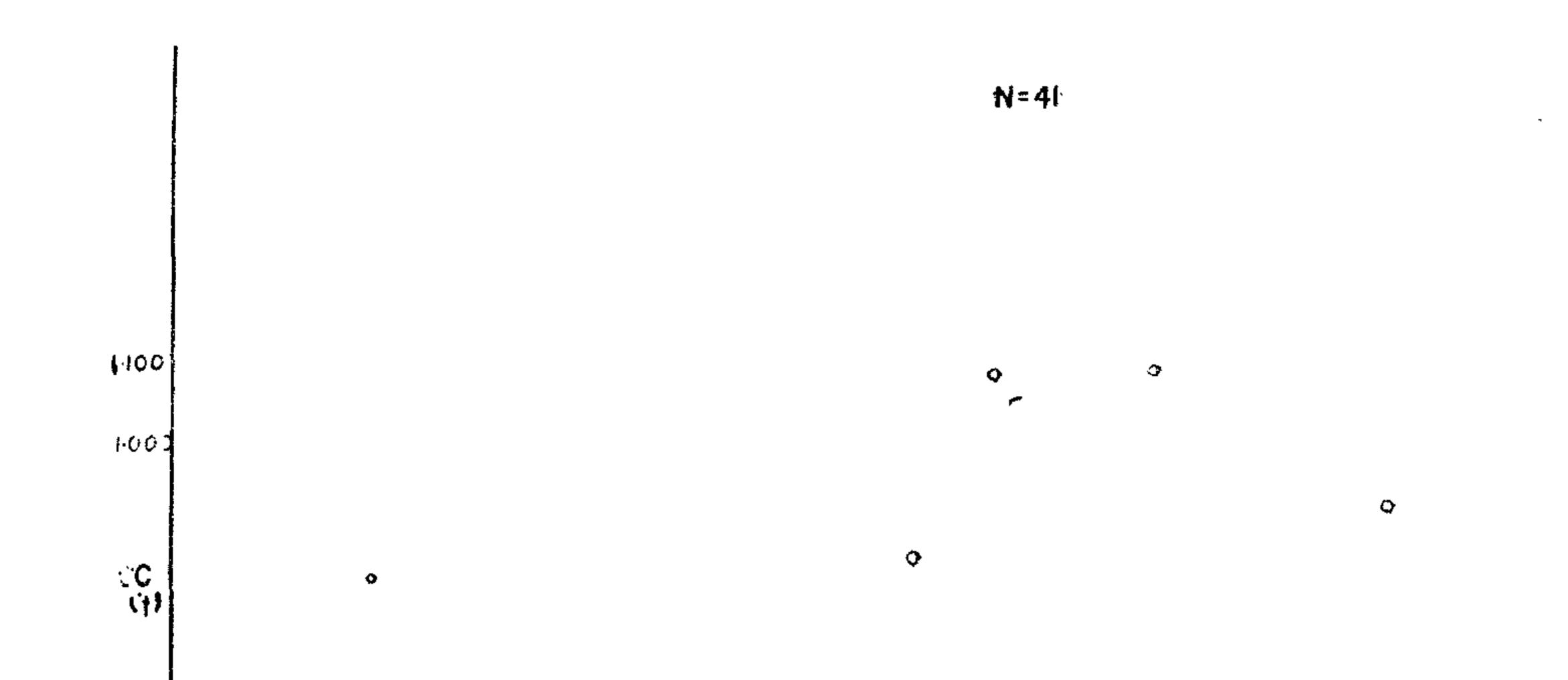
.


12

٦

.

-


5

•

•

Fig. 9.—Relationship of catch per effort C(t), to accumulated catch, A(t), of *Penaeus monodon* for the period of January 13th to March 1st, 1977 (N=41 days).

13

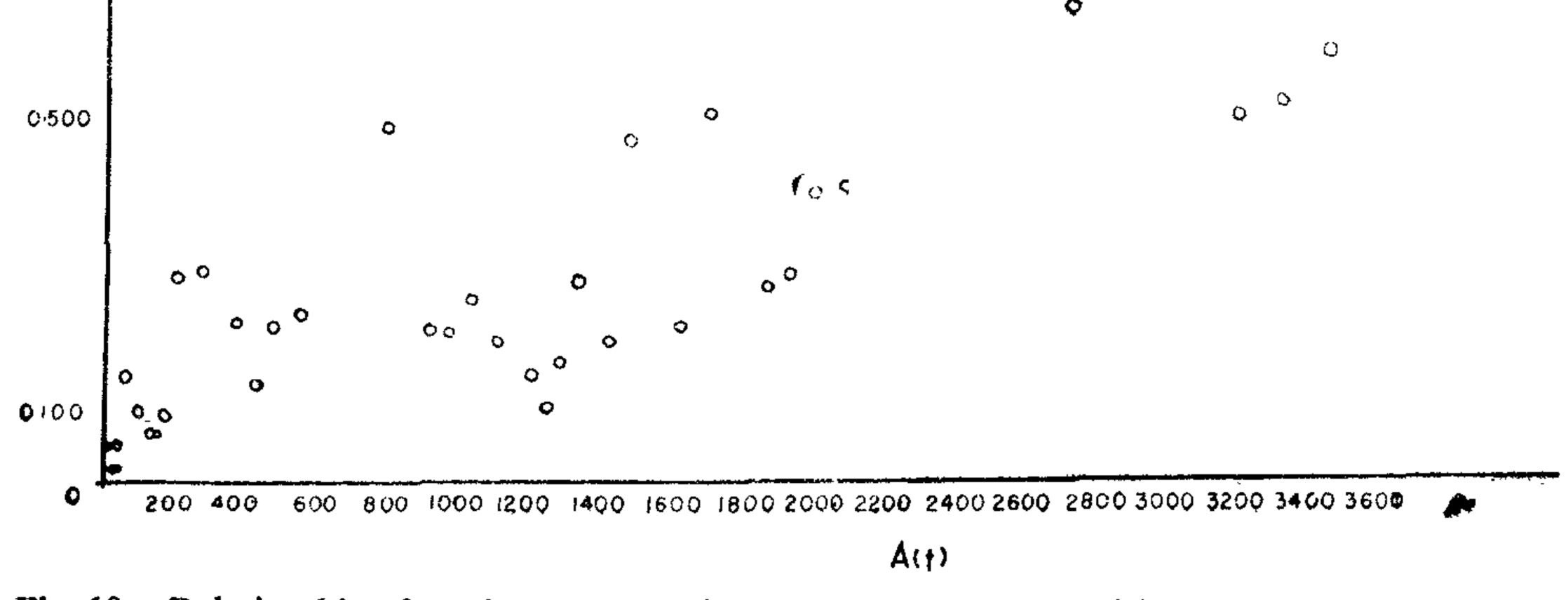


Fig. 10.—Relationship of catch per effort C(t), to accumulated catch, A(t), of *Penaeus semisulcatus* for the period January 13th to March 1st, 1977. (N=41 days)

14

ŧ

٠

POPULATION DENSITY OF PRAWNS AT CHILAW

ı.

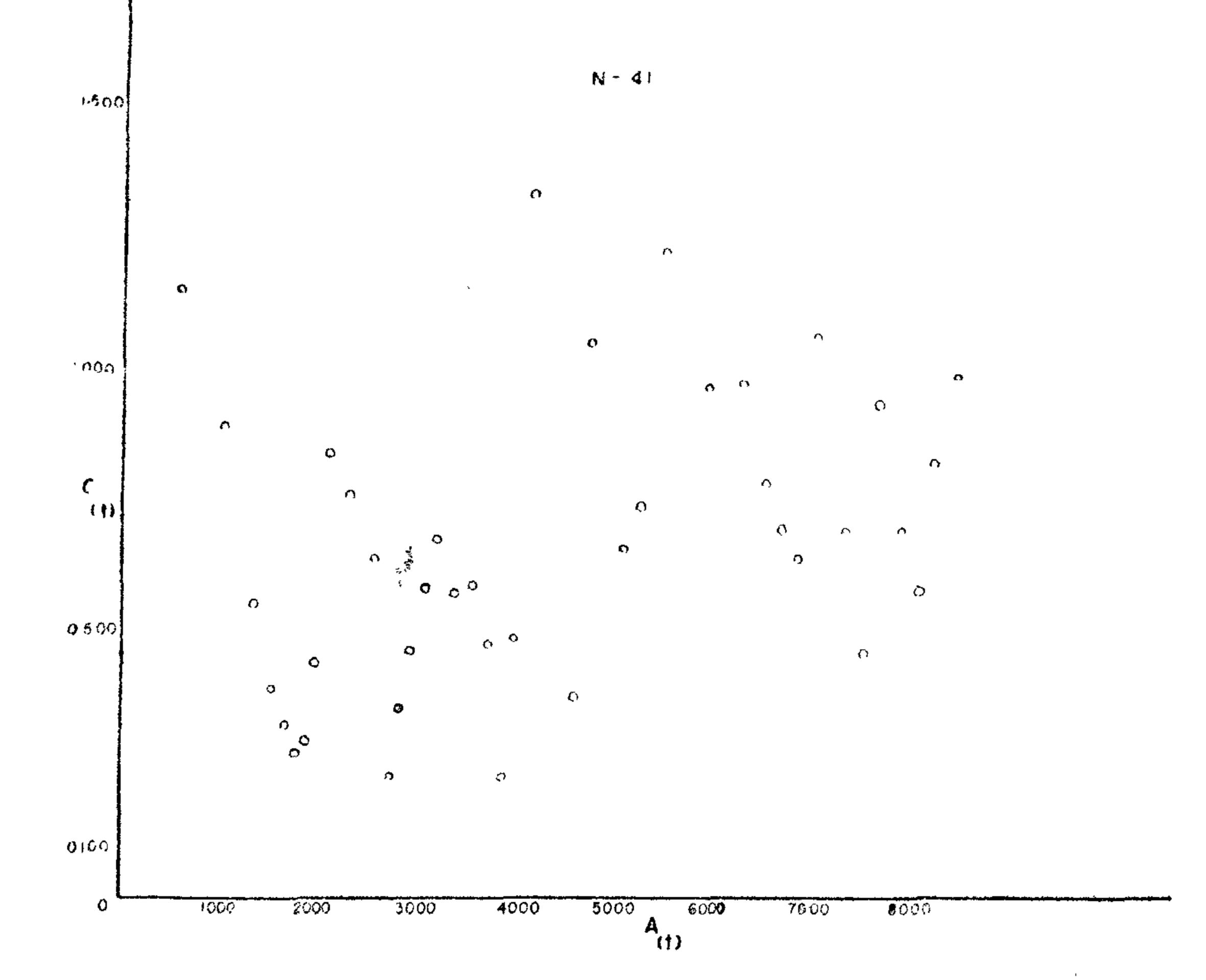
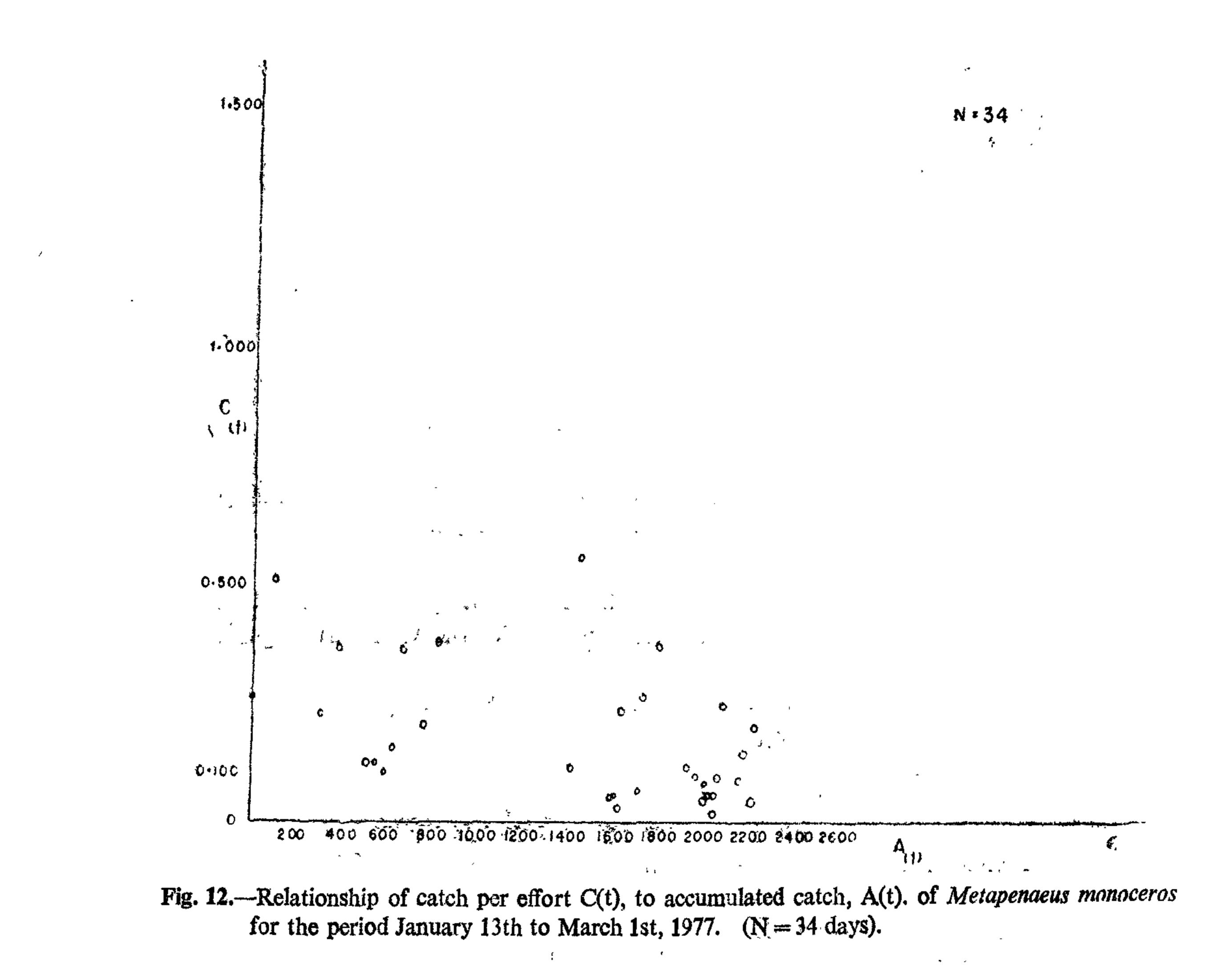
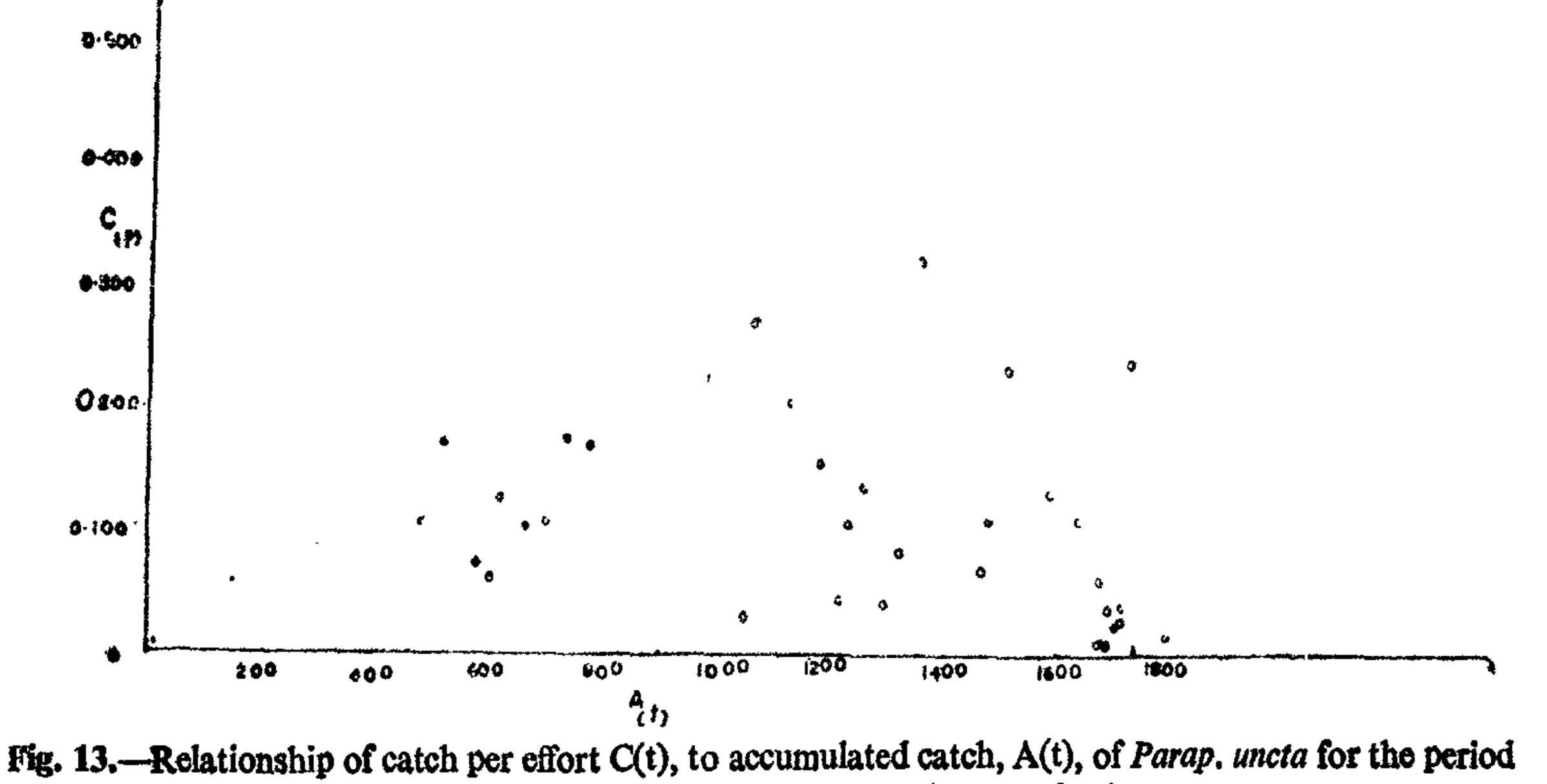



Fig. 11.—Relationship of catch per effort C(t), to accumulated catch, A(t), of *Penaeus indicus* for the period January 13th to March 1st, 1977 (N=41 days).

,

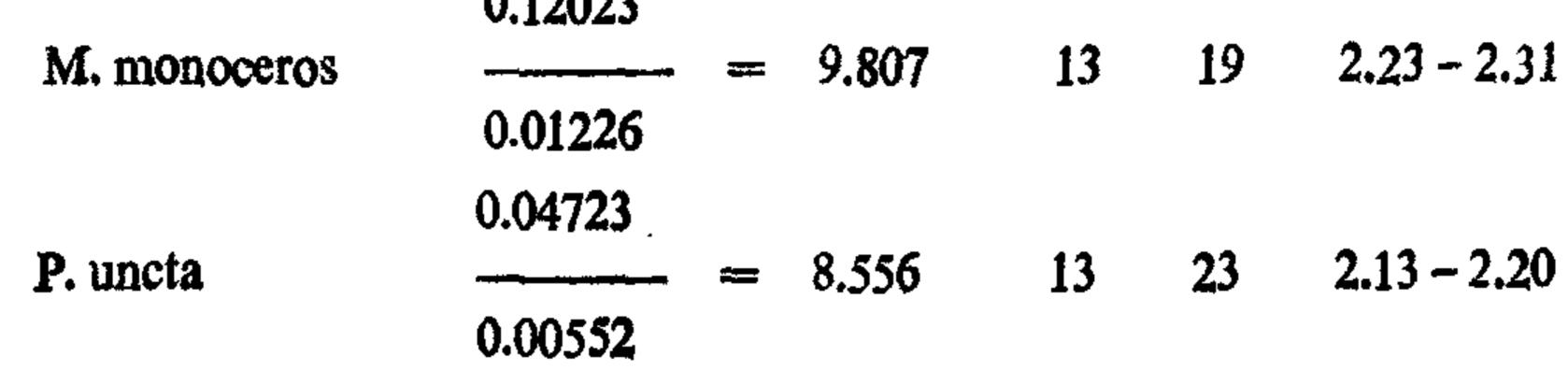
-

15


1

 16

POPULATION DENSITY OF PRAWNS AT CHILAW



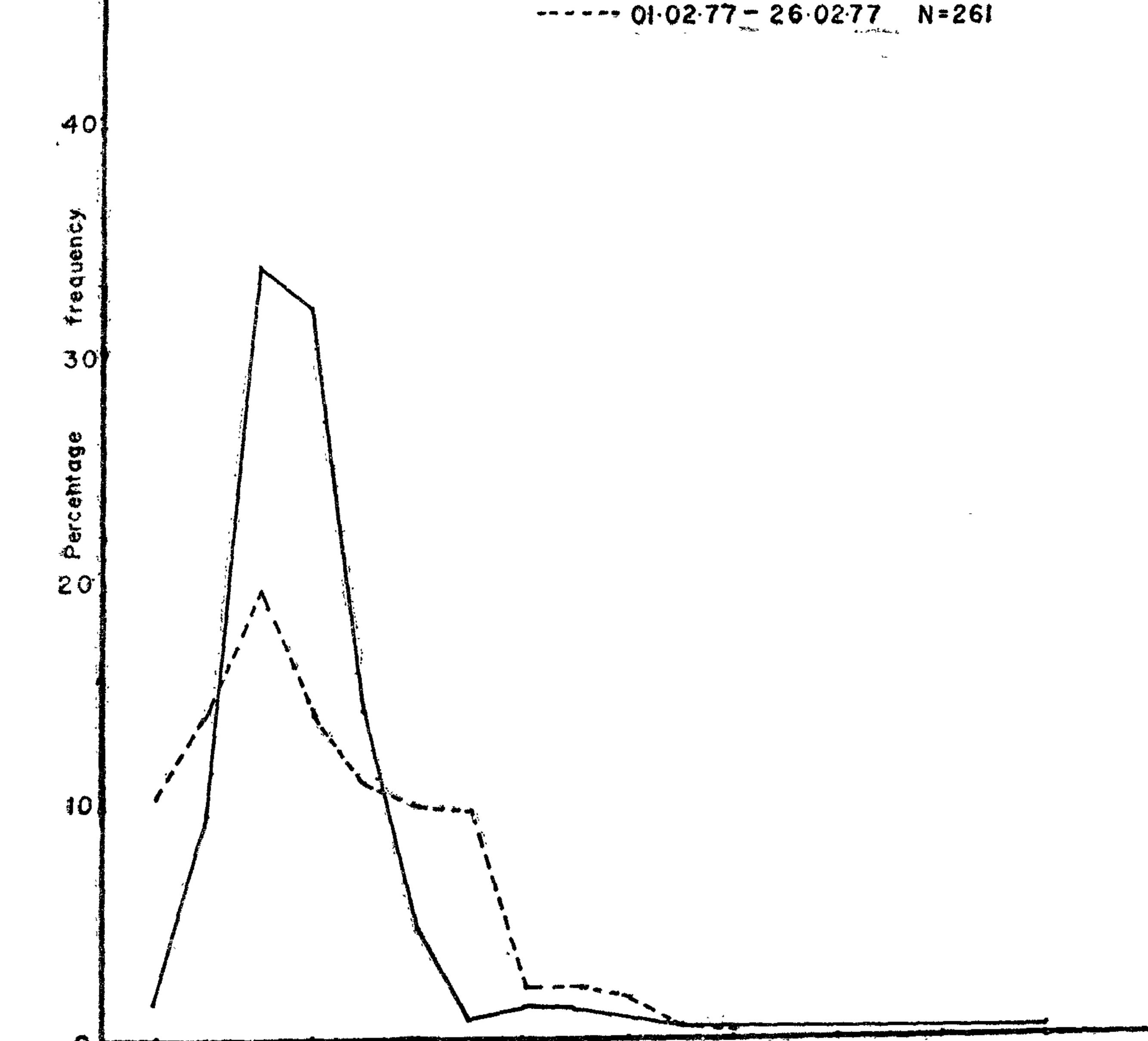
January 13th to March 1st, 1977. (N = 38 days).

was increasing or fluctuating hence the population estimate of these species could not be obtained. Their 'F' values calculated from Table (3) are given below. All the values are significant at 5% level.

	Estimated	F	V1	V,	5% value
P. monodon	0.00056	4.308	16	23	2.04 - 2.13
P. semisulcatus	0.00013 0.07085	3.749	16	23	2.04 - 2.13
F. SCHUSURGALUS	0.01890 0.17913	 - J - € - T - J -	10		
P. Indicus	0.03868	4.631	15	24	2.11
	0 12023				

Catch rate of P. monodon (Figure 9), P. semisulcatus (Figure 10) were observed to be increasing in the latter part of the period and the catch rate of P. indicus (Figure 11) was observed to be stabilised at a higher level at the latter part of the period, whereas the catch rates of M. monoceros (Figure 12) and P. uncta (Figure 13) were fluctuating more or less at constant level.

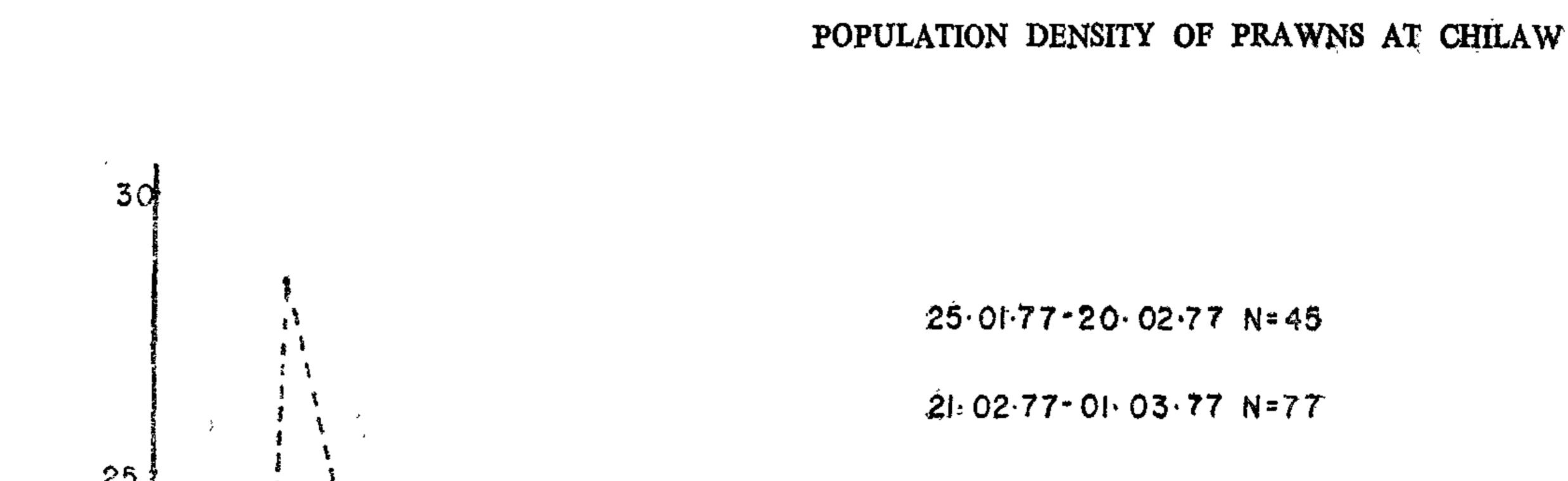
.


-

,

 \mathbf{x}

.


٠

1.8 2.0 2.4 2.8 3.4 3.6 4.0 4.4 4.8 5-2 arapace length (cm)

Fig. 14.—Size frequency distribution of Penaeus indicus landed during January 13th to March 1st, 1977.

1

18

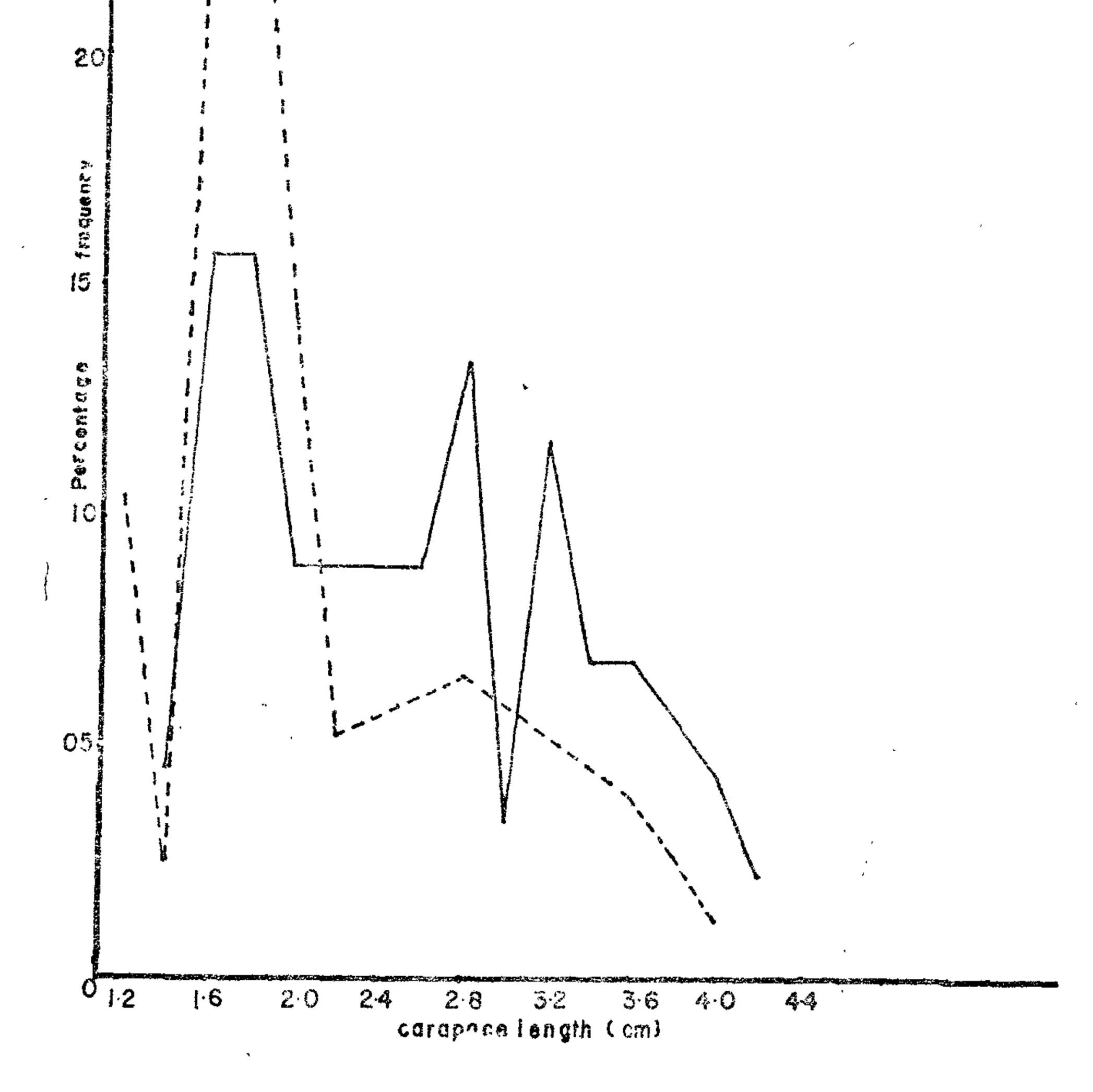


Fig. 15.—Size frequency distribution of Penaeus semisulcatus landed during January 13th to March 1st, 1977.

Figure 14 shows that the frequencies of larger sizes of P. indicus (carapace length>2.8 cm) were increased with a reduction in medium sizes (carapace length 2.2 cm-2.6 cm) and increase in smaller sizes (carapace length < 2 cm) in February, whereas the frequencies of medium sizes of P.indicus were higher in January. This suggested heavy recruitment of small catchable sizes and probable migration of larger sizes to the trawl ground during latter part of the survey.

Length frequency curves for P. monodon, M. monoceros and P. uncta were not given, as the number of length measurements taken were too few. From Figure (15) it was observed that smaller sizes of P. semisulcatus (carapace length < 1.6 cm.) were caught in greater quantities at the latter part of the study period which suggested heavy recruitment, resulting in the increase in catch rate at the latter part of the study period.

19

Species Composition

Table (4) gives sixteen species of prawns encountered in Chilaw sea. Their relative abundance is given in terms of total pounds of each species caught by the trawlers for the period 13.1.77-1.3.77.

Conclusion

A linear relationship between catch per effort and accumulated catch could be obtained for *M. dobsoni P. stylifera* and *P. coromandelica* (both taken together), *P. cornuta* and hence their stock at the start of our survey could be estimated and the values are given below :--

M. dobsoni = 21,166 pounds

P. stylifera and P. coromandelica = 7181 pounds

P. cornuta = 349 pounds.

The fact that a linear relationship could be obtained for each of the above species suggestet that emigration and natural mortality were to a certain extent balanced by immigration. An estimate which is not influenced by emigration, immigration and natural mortality could be made if we hand carried out tagging experiment simultaneously which involves much labour, co-operation from fishermen and heavy expenditure. Any how the above population estimates may be taken as approximate figures, for the reason that necessary precautions were taken to reduce the effect of immigration and recruitment on the final estimate.

Summary.—(1) Fishing success method was employed to estimate the population of different species of prawns in Chilaw sea.

(2) The plot for the January 13 to March 1, 1977 period of catch per unit of effort against accumulated catch for *M. dobsoni*, *P. stylifera* and *P. coromandelica* and the plot for the January 13 to February 8, 1977 period of catch per unit of effort against accumulated catch for *P. cornuta*, appeared to be straightlines As such their population could be estimated and their stock values at the start of our survey are given below :—

M. dobsoni= 21,166 poundsP. stylifera and P. coromandelica= 7,181 poundsP. cornuta= 349 pounds.

(3) Between 4th February and 8th February, 39,782 pounds of immigrant M. dobsoni (as estimated) were fished, which increased the estimate of M. dobsoni on the fishing ground for the study period to 60,948 pounds.

(4) The plot of catch per unit of effort against accumulated catch for the species P. monodon P. semisulcatus, P. indicus, M. monoceros, P. uncta did not show linear relationship, as such their population could not be estimated.

(5) Length frequency curves suggested that there was no large recruitment of small prawnduring the study period in case of M. dobsoni, P. stylifera, and there were heavy recruitment of small prawn during the latter part of the survey in case of P. coromandelica, P. semisulcatus, P. indicus and P. cornuta.

ACKNOWLEDGEMENT

My thanks are due to Dr. G. H. P. De Bruin, Assistant Director, Fisheries Research Station, for his guidance in the above study as well as his critical comments on the manuscript. I wish to thank Miss Y. I. Raphael, Research Officer, Fisheries Research Station for her help in identifying the prawns. I am thankful to Mr. I. S. Pothuwila, Mr. G. G. Perera, Mr. H. A. R. E. Perera, Mr. N. N. E Coorey, Mr. T. Mendis, Mr. N. C. K. Goonewardene of the Fisheries Research Station for their assistance in the field work as well as analysis of data,

REFERENCES

- DE BRUIN, G. H. P. 1965 Penaeid Prawns of Ceylon, Decapoda (Penaeidea) Zool. medded Decl. 41, No. 4, pp. 73–104
- 2. DE BRUIN, G. H. P. 1970 The Distribution of Penaeid Prawns in Ceylon Waters, Bull. Fish. Stn. Ceylon Vol. 21, Nos. 2. pp. 67–73
 - 1971 Fluctuations in Species Composition of Penaeid Prawns in Estuaries Bull. Fish. Res. Stn. Ceylon. Vol. 22, Nos. 1 and 2 pp. 47-51
 - 1957 Introduction to Statistical Analysis; McGraw-Hill, New York pp. 189–198
 - 1962 Estimating a Population of Shrimp by the use of Catch per Effort and Tagging Data; Bull. Marine Science. Gulf and Caribean Vol. 12, No. 3, pp. 350–398
 - Proceeding of the World Scientific Conference on the Biology and

- 3. DE BRUIN, G. H. P.
- DIXON, W. J. AND MASSEY, F. J. 4. (Jr.)
- IVERSEN, E. S. 5.
- FAO FISHERIES REPORT 6.

Culture of Shrimps and Prawns. No. 57, Vol. 4 FRM/57.4 (Tri.),

7. DE-LURY, D. B. 1951 On the Planning of Experiments for the Estimation of Fish. Populations. J. Fish. Res. Bd., Canada, 8(4); 281-307

TABLE 1

•

Total Member of Boats,, sampled Number of Boats, percentage of the Boats sampled, average effort per Boat, Coeficient of Variation of effort, Average catch per Boat, Caefficient of Variation of Catch (small and large added)

Date	Total boats	Sampled No. of Boats	Percentage	Average effort per boat (minutes)	Coefficient of variation of effort	Average catch per boat (pounds)	Coefficient o, variation o, catch
12 01 77	70	21	30.0	327.429	0.2698	35.3631	0.5983
13.01.77	79	25	31.6	308.320	0.2200	42.3000	0.6149
14.01.77		21	28.0	273.619	0.2865	36.0357	0.4056
15.01.77	75 79	26	32.9	272.192	0.2337	21.0769	0.4423
17.01.77	72	34	47.2	263.235	0.2878	10.3125	0.6454
18.01.77		20	29.4	285.200	0.2031	11.3125	0.6657
19.01.77	68 67	20	29.8	294.400	0.1682	18.7094	0.5717
20.01.77	67	20	32.8	287.696	0.2396	15.5054	0.6071
21.01.77	70		44.9	267.968	0.3288	- 16.4153	0.6387
22.01.77	69 50	31	48.0	307.375	0.1672	21.5990	0.5439
24.01.77	50	24	40.0	295.812	0.2302	33.5000	0.6833
25.01.77	67	32	33.3	289.950	0.2082	38.6188	0.4015
26.01.77	60	20	29.1	288.048	0.1607	26.2976	0.7342
27.01.77	72	21	32.9	271.320	0.3098	17.9525	0.6542
28.01.77	76	25	30.0	248.278	0.2851	13.4722	0.7669
29.01.77	60	18		340.433	0.1054	26.9750	0.5587
31.01.77	46	30	65.2	240.194	0.2795	22.1250	0.8080
01.02.77	64	31	48.4	259.682	0.3391	15.8542	0.4648
02.02.77	68	22	32.4	278.903	0.2193	14.6089	0.5615
03.02.77	63	31	49.2	270.905	0.2155	187.1786	0.3913
04.02.77	66	14	21.2	356.784	0.4143	370.8885	0.6144
05.02.77	86	37	43.0	218.026	0.2219	5.1204	0.7515
07.02.77	86	39	45.0	290.963	0.2236	56.6296	0.7923
08.02.77	72	27	37.5	326.389	0.1414	12.3330	0.7413
09.02.77	64	18	28.1		0.1414	11.0875	0.8340
10.02.77	64	30	46.9	323.833	0.1675	6.2350	0.7007
11.02.77	54	27	50.0	286.704	0.1852	11.7589	0.5295
12.02.77	62	28	45.2	319.036	0.1032	13.9455	0.5248
14.02.77	67	39	58.2	327.872	0.1903	10.8182	0.7034
15.02.77	71	33	46.5	289.939	0.1903	9.6923	0.5767
16.02.77	56	26	46.4	270.615	0.2042	5.6600	0.6539
17.02.77	56	27	48.2	265.815	0.2417	7.7400	0.6306
18.02.77	52	25	48.1	286.000	0.1904	8.0093	0.5720
19.02.77	55	27	49.1	286.704		12.6648	0.4877
21.02.77	51	22	43.1	329.227	0.1970	14.6450	0.3508
22.02.77	50	25	50.0	335.960	0.1940	12.7750	0.4063
23.02 .77	52	25	48.1	329.040	0.2230		0.5595
24.02.77	52	25	48.1	316.960	0.2040	15.6050	0.5395
25.02.77	52	23	44.2	301.696	0.2190	13.7663	0.5591
26.02.77	50	25	50.0	311.720	0.1820	9.5450	0.7565
28.02.77	51	25	49.0	319.400	0.2070	12.5500	0.5505
01.03.77	51	25	49.0	310.440	0.1380	15.4150	0.3908

TABLE 2

Daily Effort, Daily Catch, Catch per Hour of Effort C (t) and Accumulated Catch A (t)

.

22

		Marine Ma Arine Marine Ma Arine Marine Marin	I. dobsoni	s separate in an	Parap cor	stylifera and P omandelica	arap.
Date	- Total Effort (Minutes)	Total Catch (Lbs.)	C (t)	A (t)	Total Catch (Lbs.)	C (t)	A (t)
							_

And the second se		1	1		•		
$\begin{array}{c} 13.1.77\\ 14.1.77\\ 15.1.77\\ 15.1.77\\ 17.1.77\\ 18.1.77\\ 19.1.77\\ 20.1.77\\ 20.1.77\\ 21.1.77\\ 21.1.77\\ 25.1.77\\ 25.1.77\\ 26.1.77\end{array}$	22,395 24,382 20,579 21,613 19,209 19,682 19,724 20,139 18,640 15,378 19,747 17,397	$1,551 \\ 2,177 \\ 1,747 \\ 937 \\ 166 \\ 527 \\ 560 \\ 545 \\ 429 \\ 513 \\ 1,664 \\ 1,583$	4.155 5.357 5.094 2.601 0.518 1.606 1.704 1.624 1.381 2.002 5.056 5.056 5.460	0 1,151 3,728 5,475 6,412 6,578 7,105 7,665 8,210 8,639 9,152 10,816	60 127 515 303 222 22 22 530 315 442 22 102 300	$\begin{array}{c} 0.161\\ 0.312\\ 1.502\\ 0.841\\ 0.693\\ 0.067\\ 1.612\\ 0.938\\ 1.423\\ 0.086\\ 0.310\\ 1.035\end{array}$	0 60 187 702 1,005 1,227 1,249 1,779 2,094 2,536 2,558 2,558 2,660
28.1.77 29.1.77 31.1.77	21,047 15,14 2 14,694	1,022 299 952	1.185 3.887	14,329 14,628	104 133	0.412 0.543	3,099 3,176 3,280 3,413
1.2.77 2.2.77	15,447 17,994	743 521 609	2.886 1.737 2.067	15,580 16,323 16,844	104 17 30	0.404 0.057 0.102	3,517
3.2.77 4.2.77 5.2.77	17,681 18,116 31,698	5,388 - 32,643	17.845 61.789	17,453 17,970	219 163	0.725 0.308	3,564 3,783 3,946
7.2.77	10 750	.641	2.051 9.095	18,487 19.004	73 216	0.234 0.618	3,940 4.019

$\begin{array}{r} 8.2.77\\ 9.2.77\\ 10.2.77\\ 10.2.77\\ 11.2.77\\ 12.2.77\\ 14.2.77\\ 15.2.77\\ 15.2.77\\ 15.2.77\\ 15.2.77\\ 15.2.77\\ 21.2.77\\ 22.2.77\\ 23.2.77\\ 23.2.77\\ 24.2.77\\ 25.2.77\\ 26.2.77\\ 28.2.77\\ 1.3.77\end{array}$	$\begin{array}{c} 20,966\\ 20,889\\ 20,939\\ 15,809\\ 19,801\\ 21,922\\ 20,586\\ 15,164\\ 14,856\\ 15,014\\ 15,636\\ 16,904\\ 16,796\\ 17,110\\ 16,482\\ 15,677\\ 15,714\\ 16,275\\ 15,832\end{array}$	$ \begin{array}{r} 3,176\\ 301\\ 93\\ 11\\ 29\\ 253\\ 32\\ 47\\ 19\\ 2\\ 47\\ 48\\ 51\\ 82\\ 82\\ 272\\ 161\\ 160\\ 117 \end{array} $	$\begin{array}{c} 9.093\\ 0.865\\ 0.266\\ 0.042\\ 0.088\\ 0.692\\ 0.093\\ 0.186\\ 0.077\\ 0.008\\ 0.180\\ 0.170\\ 0.182\\ 0.288\\ 0.298\\ 1.041\\ 0.615\\ 0.590\\ 0.443\end{array}$	19,004 $19,521$ $19,822$ $19,915$ $19,926$ $19,955$ $20,208$ $20,240$ $20,287$ $20,306$ $20,308$ $20,308$ $20,355$ $20,403$ $20,454$ $20,536$ $20,618$ $20,890$ $21,051$ $21,211$	$ \begin{array}{r} 210 \\ 169 \\ 82 \\ 56 \\ 37 \\ 40 \\ 119 \\ 127 \\ 63 \\ 90 \\ 63 \\ 22 \\ 122 \\ 197 \\ 15 \\ 92 \\ 16 \\ 33 \\ 44 \\ \end{array} $	$\begin{array}{c} 0.013\\ 0.485\\ 0.235\\ 0.212\\ 0.212\\ 0.112\\ 0.110\\ 0.347\\ 0.502\\ 0.254\\ 0.360\\ 0.242\\ 0.078\\ 0.436\\ 0.691\\ 0.055\\ 0.352\\ 0.061\\ 0.122\\ 0.167\end{array}$	4,235 4,404 4,486 4,542 4,579 4,619 4,738 4,865 4,928 5,018 5,018 5,018 5,018 5,018 5,081 5,103 5,225 5,422 5,437 5,529 5,545 5,578
--	--	---	---	---	--	---	--

~

TABLE 2 (Contd.)

Daily Effort, Daily Catch, Catch per Hour of Effort C(t) and Accumulated Catch A(t)

23

•

			- · · · · · · · · · · · · · · · · · · ·		ويتحديد والمتحدي المجاز بالمحدي	ومحمد بالغدية محماني بي محمد بيبان مخدن	بالمحمد إرابي ويستعد الكالا في فيعد عدد التب			
		Pai	ap. cornut	a	J	P. monodon	ţ	<i>P</i> .	semisulcat	tus
Date	Total Effort (Minutes)	Total Catch (Lbs.)	C (t)	A (t)	Total Catch (Lbs.)	C (t)	A (t)	Total Catch (Lbs.)	C (t)	A (t)
									0.040	

			0.007	0	20	0.054	0	18	0.048	0
13.1.77	22,395	10	0.027			0.034	20	6	0.015	18
14.1.77	24,382	21	0.052	10	13		33	Ğ	0.018	24
15.1.77	20,579	4	0.012	31	16	0.047	•	17	0.047	30
	21,613	7	0.019	35	3	0.008	49	17	0.144	47
17.1.77	19,209	20	0.062	42	 ∴3 	0.009	52	46	E	93
18.1.77		21	0.064	62	2	0.006	55	31	0.094	
19.1.77	19,682		0.009	83	8	0.024	57	22	0.067	124
20.1.77	19,724	3	0.012	86	9	0.037	65	22	0.066	146
21.1.77	20,139	4		90	6	0.019	74	28	0.090	168
22.1.77	18,640	2	0.006	92	17	0.066	80	71	0.277	196
24.1.77	15,378	9	0.035	•	-	0.030	97	94	0.286	267
25.1.77	19,747	8	0.024	101	10	0.041	107	62	0.214	361
26.1.77	17,397	11	0.038	109	12	•	119	45	0.130	423
27.1.77	20,856	48	0.138	120	10	0.029	2	73	0.208	468
28.1.77	21,047	2	0.006	168	10	0.028	129	57	0.226	541
	15,142	8	0.032	170	10	0.040	139		0.800	598
29.1.77	14,694	6	0.024	178	9	0.037	149	196	•	794
31.1.77	T F	5	0.019	184	8	0.031	158	122	0.474	
1.2.77	15,447	5	0.020	189	9	0.030	166	61	0.203	916
2.2.77	17,994	0	0.020	195	9	0.030	175	59	0.200	977
3.2.77	17,681	D	0.020	175	7	0.023	184	73	0.242	1,036
4.2.77	18,116				12	0.023	191	100	0.189	1,109
5.2.77	31,698	· · · · · · · · · · · · · · · · · · ·		010	14 9	0.029	203	45	0.144	1,209
7.2.77	18,750	2	0.006	213	10	0.029	212	35	0.100	1.254

$\begin{array}{c} 8.2.77\\ 9.2.77\\ 10.2.77\\ 10.2.77\\ 11.2.77\\ 12.2.77\\ 12.2.77\\ 14.2.77\\ 15.2.77\\ 15.2.77\\ 15.2.77\\ 15.2.77\\ 19.2.77\\ 19.2.77\\ 21.2.77\\ 23.2.77\\ 23.2.77\\ 23.2.77\\ 25.2.77\\ 26.2.77\\ 28.2.77\end{array}$	21,922 20,586 15,164 14,856 15,014 15,636 16,904 16,796 17,110 16,482 15,677 15,714 16,275	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	216 225 242 261 312 326 353 372 377 379 381 385	$ \begin{array}{r} 12 \\ 6 \\ 7 \\ 5 \\ 10 \\ 18 \\ 14 \\ 13 \\ 14 \\ 13 \\ 14 \\ 13 \\ 14 \\ 13 \\ 14 \\ 15 \\ 22 \\ 19 \\ 26 \\ 14 \\ 8 \\ 9 \\ 8 \\ 11 \\ 17 \\ \end{array} $	$\begin{array}{c} 0.034\\ 0.017\\ 0.020\\ 0.020\\ 0.019\\ 0.030\\ 0.049\\ 0.041\\ 0.056\\ 0.060\\ 0.060\\ 0.084\\ 0.060\\ 0.084\\ 0.067\\ 0.093\\ 0.049\\ 0.029\\ 0.029\\ 0.034\\ 0.030\\ 0.041\\ 0.030\\ 0.041\\ 0.064\end{array}$	$\begin{array}{c} 212\\ 224\\ 230\\ 237\\ 242\\ 252\\ 270\\ 284\\ 297\\ 311\\ 326\\ 348\\ 367\\ 393\\ 407\\ 415\\ 424\\ 432\\ 443\\ 443\\ 443\end{array}$	35 55 92 49 150 75 168 65 68 96 102 233 304 181 299 127 132 155 237	$\begin{array}{c} 0.100\\ 0.158\\ 0.264\\ 0.186\\ 0.454\\ 0.205\\ 0.490\\ 0.257\\ 0.275\\ 0.384\\ 0.391\\ 0.391\\ 0.827\\ 1.086\\ 0.635\\ 1.088\\ 0.486\\ 0.504\\ 0.571\\ 0.898\\ \end{array}$	1,289 1,344 1,436 1,485 1,635 1,635 1,710 1,878 1,943 2,011 2,107 2,209 2,442 2,746 2,927 3,226 3,353 3,485 3,640
---	--	---	--	--	---	---	---	--	---

-

TABLE 2 (Contd.)

Daily Effort, Daily Catch, Catch per Hour of Effort C(t) and Accumulated Catch A(t)

		P	. indicus		I	Parap. unci	ta	M	(. monocer	'OS
Date	Total Effort (Minutes)	Total Catch (Lbs.)	C (t)	A (t)	Total Catch (Lbs.)	C (t)	A (t)	Total Catch (Lbs.)	C (t)	A (t
		,	1 505		157	0.407	0	97	0.260	
13.1.77	22,395	562	1.506	500	152	0.407	152	207	0.509	
14.1.77	24,382	464	1.142	562	326		478	76	0.222	3
15.1.77	20,579	304	0.886	1,026	36	0.105	3	131	0.364	3
17.1.77	21,613	198	0.550	1,330	62	0.172	514	39	0.122	5
18.1.77	19,209	126	0.394	1,528	23	0.072	576		0.122	5
19.1.77	19,682	106	0.323	1,654	19	0.058	599	41	0.125	
20.1.77	19,724	89	0.271	1,760	42	0.128	618	25	0 104	
21.1.77	20,139	99	0.295	1,849	35	0.104	660	35	0.104	5
22.1.77	18,640	137	0.441	1,948	36	0.116	695	48	0.154	6
24.1.77	15,378	215	0.839	2,085	45	0.176	731	92 67	0.359	6
25.1.77	19,747	249	0.737	2,300		0.100		67	0.204	7
26.1.77	17,397	184	0.635	2,549	49	0.169	776	109	0.376	8
27.1.77	20,856	78	0.224	2,733	218	0.627	825	484	1.392	9
28.1.77	21,047	125	0.356	2,811	10	0.028	1,043	40	0.114	1,4
29.1.77	15,142	117	0.464	2,936	69	0.273	1,053	140	0.555	1,4
31.1.77	14,694	142	0.580	3,053	51	0.208	1,122			
1.2.77	15,447	173	0.672	3,195	40	0.155	1,173	16	0.052	1 1 4
2.2.77	17,994	172	0.574	3,368	13	0.043	1,213	16	0.053	1,6
3.2.77	17,681	173	0.587	3,540	31	0.105	1,226		الند النبيجي	
4.2.77	18,116	143	0.474	3,713	42	0.139	1,257			
5.2.77	31,698	118	0.223	3,856	20	0.038 0.083	1,299 1,319	18	0.058	1,6
7.2.77	18,750	152	0.486	3,974	26 112	0.320		11	0.032	1,6
8.2.77	20,966	463	1.325	4,126	<u></u>		1,345	82	0.236	1,6
9.2.77	20,889	130	0.373	4,589 4,719	23	0.066	1,457	22	0.063	1,7
10.2.77	20,939	363	1.040 0.653	5,082	29	0.110	1,480	69	0.262	1,7
11.2.77	15,809	172	0.035	5,254	77	0.233	1,509	122	0.370	1,8
12.2.77	19,801	243 444	1.215	5,497	48	0.131	1,586	43	0.118	1,9
14.2.77	21,922	329	0.959	5,941	37	0.108	1,634	33	0.096	1,9
15.2.77	20,586	245	0.969	6,270	2	0.008	1,671	11	0.044	2,0
16.2.77	15,164 14,856	192	0.775	6,515	15	0.061	1,673			
17.2.77	15,014	173	0.691	6,707	1	0.004	1,688	20	0.080	2,0
18.2.77 19.2.77	15,636	166	0.637	6,880	10	0.038	1,689	14	0.054	2,0
· ·	16,904	300	1.065	7,046	6	0.021	1,699	5	0.018	2,0
21.2.77	16,796	193	0.689	7,346	7	0.025	1,705	15	0.054	2,0
22.2.77	17,110	131	0.459	7,539	11	0.039	1,712	26	0.091	2,0
23.2.77	16,482	255	0.928	7,670	65	0.237	1,723	67	0.244	2,1
24.2.77	15,677	180	0.689	7,925				23	0.088	2,1
25.2.77	15,714	150	0.573	8,105	0	0	1,788	37	0.141	2,2
26.2.77 28.2.77	16,275	222	0.818	8,255	4	0.015	1,788	12	0.044	2,2
1.3.77	15,832	258	0.978	8,477	15	0.057	1,792	52	0.197	2,2

-

•

-

۲

•

₹.

Ъ.	M. dobsoni		P. Styl	P. stylifera and P. coromandelica			cornuta			P. indicus	
Sum of Squares	đ. f.	Mean Squares	Sum of Squares	d.f.	Mean Squares	Sum of Squares	đ.f.	Mean Squares	Sum of Squares	Å. <i>f.</i>	Mean Squares
14.779 76.289 11.160	26 1	0.56842 1.24000	3.645 3.645 1.539 1.055	10 T 6	0.12569 0.10550	0.0101 0.0014 0.0067	13	0.00078 0.00112	0.9283 0.1102 2.6869	2 7 	0.03868 0.17913
87.449	10		2.594	11		0.0081	-		2.7971	16	

Î

P. S.	semisulcatus	S	Ċ,	P. monodon			P. uncta		N.	M. monoceros	S
Sum of quares	ď.f.	Mean Squares	Sum of Squares	d. f.	Mean Squares	Sum of Squares	đ. f.	Mean Squares	Squares Squares	А. У.	Mean Squares
0.4347 1.5956 1.1336	23 1 16	0.01890 0.07085	0.0029 0.0029 0.0090	16 1 23 16	0.00013 0.00056	0.127 0.272 0.614	11 13	0.00552 0.04723	0.233 0.268 1.563	13 19	0.01226 0.12023
2.7292	17		0.0119	17		0.886	14		1.831	14	

25

Â.

(Contd.)

9 Values to calculate Statistical Analysis, Page 197),

BI	
IA	

3

f linearity (Dixon and Massey 1957, Introduction to S

17	0.0119		17	2.7292	Total
16	0.0000	0.07085	16.	1.1336	About Regression
	0.0029		j	1.5956	Regression
33	0.0029	0.01890	33	0.4347	Within groups
đ. 5.	Sum of Squares	Mean Squares	ď.f.	Sum of Squares	
monodo	Ŕ	S	P. semisulcatus	S. S.	
iction to	of linearity (Dixon and Massey 1957, Introduction	and Massey	ty (Dixon	Test of lineari	

00	
Total	

Squ	421	5	
	Within groups Regression About Regression	Total	

9	
Test	

•

he same period

Per-	71.63 10.24 6.59	4.5522.70	2.12 0.62 0.54	0.20	0.09 0.04	0.01	0.001 0.31	0.21	0.04 0.10 0.007	166.66
Total Pounds	61107.7 8738.1 5621.5	3878.0 2302.7	1806.9 528.0 459.7	169.5	78.6 31.9	12.4	1.2 264.0	180.3	36.0 88.3 0.6	85305.4
> 3,000				- 		ļ	264.0]		4
2,000				1		 .			1 2	

POPULATION DENSITY OF PRAWNS AT CHILAW

Λ each Species of Prawn and Total Catch of fish for th e >600 3.8 88.3 31.3 : £ Pound 450-600 265.6 22.3 102 Per -300-449 Pieces 2156.8 17.6 426 31.9 of 150-299 14982.0 Number 215.5 3950.6 **88.9** 41.2 1.2 6.8 9.9 54 L 3968.9 16.8 374.0 348.5 669.0 5.6 5-149 1775.0 18.3 8.5 ς... 134.8

(Silver biddy, jew fish, estuarine purch, cat fish, small skate, squid, sea crab, Tongue-soles, etc.). 103,139 Pounds Fish-

TABLE 4

1

١

-

ures of Catch for the Period 13.1.77 to 1.3.77 for e

Vernacutar Name	1-10	10-34	35-54	55
Mal-issa Kiri-issa Kakulu-issa	663.4	7842.4		4 4
Kurutu-issa(Tiger) Thandu-issa	607.4	2833.2	633.7	
Karnu-Issa Gal-issa Gal-issa Karavandu-issa	453.5	1 3	14.3	,
(liger) Rathu-issa]	~] ,	151.2	,
do. do. do.			20.1	
ġ.	}]]	
do. Kooni-issa				
Rathu-issa Thandu-issa		ļ	4	، ن
Bandi-issa]]	
1	-		ļ	
				ļ

Breakdown figures of

...

	KAKA KAKUKA	
Scientific Name	 Metapenaeus dobsoni Penaeus indicus Penaeus indicus Parap. stylifera Parap. coromandelica Penaeus semisulcatus Metapenaeus Metapenaeus Penaeus monodon Metapenaeus mutatus Metapenaeus ensis Metapenaeus ensis Metapenaeus indiarulus 	 burkenrodi burkenrodi 14 Metapenaeus elegans 15 Unidentified immature prawns 16 Unidentified 17 Metapenaeus species 18 Trachypeneus species 19 Caridian species 20 Parapeneopsis species